Advertisement

Plant Foods for Human Nutrition

, Volume 71, Issue 2, pp 197–203 | Cite as

Phytochemical Composition and Antitumor Activities of New Salad Greens: Rucola (Diplotaxis tenuifolia) and Corn Salad (Valerianella locusta)

  • R. P. Ramos-Bueno
  • M. A. Rincón-Cervera
  • M. J. González-Fernández
  • J. L. Guil-GuerreroEmail author
Original Paper

Abstract

D. tenuifolia and V. locusta, two greens, were analyzed for active compounds and antitumor actions on colorectal cancer cells. Phenolics were determined by UHPLC-Orbitrap-MS; carotenoids and glucosinolates by HPLC-MS; and sterols and fatty acids by gas–liquid chromatography (GLC). For antitumor effects, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) tests were run on HT-29 colorectal cancer cells, and in CCD-18 untransformed enterocyte cells. Six main carotenoids were identified in both vegetables, while total carotenoids accounted for 3520 and 2970 μg · g−1 dry weight in D. tenuifolia and V. locusta, respectively. Six phenolics were detected in D. tenuifolia (68,600 μg · g−1 dry weight) and five in V. locusta (139,000 μg · g−1 dry weight). Three glucosinolates (GSL) were found in D. tenuifolia (1960 μg · g−1 dry wt. total). Low-polarity extracts from V. locusta and D. tenuifolia showed IC50 ~ 150 and ~200 μg · mL−1 on HT-29 cells, while both plants lacked actions on CCD-18 cells. V. locusta inhibited HT-29 cancer cells viability more efficiently than D. tenuiofolia, but induced less cytotoxicity. This work highlights the importance of functional foods for colorectal cancer prevention.

Keywords

Bioactive compounds Cytotoxicity Diplotaxis tenuifolia HT-29 colorectal cancer cells Valerianela locusta 

Abbreviations

4-MSB

4-methylsulphinylbutyl (glucoraphanin)

AIF

All-ion fragment

ALA

α-linolenic acid

APCI

Atmospheric pressure chemical ionization

BSTFA

Tris (2-carboxyethyl) phosphine hydrochloride bis-(trimethylsilyl) trifluoroacetamide

EFA

Essential FA

ESI

Heated electrospray interface

FA

Fatty acid

FBS

Fetal bovine serum

FID

Flame ionization detector

GSL

Glucosinolate

LA

Linoleic acid

LDH

Lactate dehydrogenase

MTBE

Methyl tert-butyl ether

MTT

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PUFA

Polyunsaturated fatty acid

Notes

Compliance with Ethical Standards

Funding

This project was not directly supported by any research funds.

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects.

Supplementary material

11130_2016_544_MOESM1_ESM.docx (17 kb)
Online Resource 1 (DOCX 17 kb)
11130_2016_544_MOESM2_ESM.docx (17 kb)
Online Resource 2 (DOCX 17.2 kb)
11130_2016_544_MOESM3_ESM.docx (13 kb)
Online Resource 3 (DOCX 13.4 kb)
11130_2016_544_MOESM4_ESM.docx (15 kb)
Online Resource 4 (DOCX 14.7 kb)
11130_2016_544_MOESM5_ESM.doc (44 kb)
Online Resource 5 (DOC 44 kb)

References

  1. 1.
    Ferrante A, Martinetti L, Maggiore T (2009) Biochemical changes in cut vs. intact lamb’s lettuce (Valerianella olitoria) leaves during storage. Int J Food Sci Tech 44:1050–1056. doi: 10.1111/j.1365-2621.2008.01891.x CrossRefGoogle Scholar
  2. 2.
    Giovenzana V, Beghi R, Buratti S, Civelli R, Guidetti R (2014) Monitoring of fresh-cut Valerianella locusta Laterr. shelf life by electronic nose and VIS–NIR spectroscopy. Talanta 120:368–375. doi: 10.1016/j.talanta.2013.12.014
  3. 3.
    Kuppusamy P, Yusoff MM, Pragas Maniam G, Arief Ichwan SJ, Soundharrajan I, Govindan N (2014) Nutraceuticals as potential therapeutic agents for colon cancer: a review. Acta Pharm Sin B 4:173–181. doi: 10.1016/j.apsb.2014.04.002 CrossRefGoogle Scholar
  4. 4.
    Cavallini G, Dachà M, Potenza L, Ranieri A, Scattino C, Castagna A, Bergamini E (2014) Use of red blood cell membranes to evaluate the antioxidant potential of plant extracts. Plant Foods Hum Nutr 69:108–114. doi: 10.1007/s11130-014-0414-0 CrossRefGoogle Scholar
  5. 5.
    Manchali S, Chidambara Murthy KN, Patil BS (2012) Crucial facts about health benefits of popular cruciferous vegetables. J Funct Foods 4:94–106. doi: 10.1016/j.jff.2011.08.004 CrossRefGoogle Scholar
  6. 6.
    Guil-Guerrero JL, Rodríguez-García I (1999) Lipids classes, fatty acids and carotenes of the leaves of six edible wild plants. Eur Food Res Technol 209:313–316. doi: 10.1007/s002170050501 CrossRefGoogle Scholar
  7. 7.
    Guil-Guerrero JL (2007) Stearidonic acid (18:4n-3): metabolism, nutritional importance, medical uses and natural sources. Eur J Lipid Sci Technol 109:1226–1236. doi: 10.1002/ejlt.200700207 CrossRefGoogle Scholar
  8. 8.
    Dietz JM, Kantha SS, Erdman JW Jr (1988) Reversed phase HPLC analysis of α-and β-carotene from selected raw and cooked vegetables. Plant Foods Hum Nutr 38:333–341. doi: 10.1007/BF01091731 CrossRefGoogle Scholar
  9. 9.
    Heo BG, Chon SU, Park YJ, Bae JH, Park SM, Park YS, Jang HG, Gorinstein S (2009) Antiproliferative activity of Korean wild vegetables on different human tumor cell lines. Plant Foods Hum Nutr 64:257–263. doi: 10.1007/s11130-009-0138-8 CrossRefGoogle Scholar
  10. 10.
    Alarcón-Flores MI, Romero-González R, Martínez Vidal JL, Garrido Frenich A (2013) Multiclass determination of phytochemicals in vegetables and fruits by ultra high performance liquid chromatography coupled to tandem mass spectrometry. Food Chem 141:1120–1129. doi: 10.1016/j.foodchem.2013.03.100 CrossRefGoogle Scholar
  11. 11.
    Villatoro-Pulido M, Priego-Capote F, Álvarez-Sánchez B, Saha S, Philo M, Obregón-Cano S, De Haro-Bailón A, Font R, Del Río-Celestino M (2013) An approach to the phytochemical profiling of rocket [Eruca sativa (Mill.) Thell]. J Sci Food Agric 293:3809–3819. doi: 10.1002/jsfa.6286 CrossRefGoogle Scholar
  12. 12.
    Kovacic M, Veberic R, Ugrinovic K, Jakše M (2015) Glucosinolate analysis of wild rocket [Diplotaxis tenuifolia (L.) DC] from different Slovenian regions cultivated on two growing systems. Eur J Hortic Sci 80:199–207. doi: 10.17660/eJHS.2015/80.5.1 CrossRefGoogle Scholar
  13. 13.
    Hall MKD, Jobling JJ, Rogers GS (2014) Variations in the most abundant types of glucosinolates found in the leaves of babyleaf rocket under typical commercial conditions. J Sci Food Agric 95:552–559. doi: 10.1002/jsfa.6774 CrossRefGoogle Scholar
  14. 14.
    Nordmark L, Gertsson U, Olsson K, Olsson ME (2014) Content in bioactive compounds in baby-leaves as affected by season and growth stage at harvest. Acta Hortic 1040:201–206. doi: 10.17660/ActaHortic.2014.1040.27 CrossRefGoogle Scholar
  15. 15.
    Guil-Guerrero JL, Rebolloso-Fuentes MM (2009) Nutrient composition and antioxidant activity of eight tomato (Lycopersicon esculentum) varieties. J Food Compos Anal 22:123–129. doi: 10.1016/j.jfca.2008.10.012 CrossRefGoogle Scholar
  16. 16.
    Grzegorzewski F, Rohn S, Kroh LW, Geyer M, Schlüter O (2010) Surface morphology and chemical composition of lamb’s lettuce (Valerianella locusta) after exposure to a low-pressure oxygen plasma. Food Chem 122:1145–1152. doi: 10.1016/j.foodchem.2010.03.104 CrossRefGoogle Scholar
  17. 17.
    Jeong WS, Lachance PA (2001) Phytosterols and fatty acids in fig (Ficus carica var. Mission) fruit and tree components. J Food Sci 66:278–281. doi: 10.1111/j.1365-2621.2001.tb11332.x
  18. 18.
    Martínez-Sánchez A, Allende A, Bennett RN, Ferreres F, Gil MI (2006) Microbial, nutritional and sensory quality of rocket leaves as affected by different sanitizers. Postharvest Biol Technol 42:86–97. doi: 10.1016/j.postharvbio.2006.05.010 CrossRefGoogle Scholar
  19. 19.
    Guil-Guerrero JL, Ramos-Bueno R, Rodríguez-García I, López-Sánchez C (2011) Cytotoxicity screening of several tomato extracts. J Med Food 14:1–7. doi: 10.1089/jmf.2010.0051 CrossRefGoogle Scholar
  20. 20.
    Fontana E, Nicola S (2009) Traditional and soilless culture systems to produce corn salad (Valerianella olitoria L.) and rocket (Eruca sativa Mill.) with low nitrate content. Food Agric Environ 7:405–410Google Scholar
  21. 21.
    Žnidarčič D, Ban D, Šircelj H (2011) Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chem 129:1164–1168. doi: 10.1016/j.foodchem.2011.05.097 CrossRefGoogle Scholar
  22. 22.
    Normén L, Johnsson M, Andersson H, Van Gameren Y, Dutta P (1999) Plant sterols in vegetables and fruits commonly consumed in Sweden. Eur J Nutr 38:84–89. doi: 10.1007/s003940050048
  23. 23.
    Pasini F, Verardo V, Caboni MF, D’Antuono LF (2012) Determination of glucosinolates and phenolic compounds in rocket salad by HPLC-DAD–MS: evaluation of Eruca sativa Mill. and Diplotaxis tenuifolia L. genetic resources. Food Chem 133:1025–1033. doi: 10.1016/j.foodchem.2012.01.021
  24. 24.
    Woyengo TA, Ramprasath VR, Jones PJH (2009) Anticancer effects of phytosterols. Eur J Clin Nutr 63:813–820. doi: 10.1007/s003940050048 CrossRefGoogle Scholar
  25. 25.
    Spencer L, Mann C, Metcalfe M, Webb M, Pollard C, Spencer D, Berry D, Steward W, Dennison A (2009) The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. Eur J Cancer 45:2077–2086. doi: 10.1016/j.ejca.2009.04.026 CrossRefGoogle Scholar
  26. 26.
    Guil-Guerrero JL (2014) Common mistakes about fatty acids identification by gas–liquid chromatography. J Food Compos Anal 33:153–154. doi: 10.1016/j.jfca.2013.12.006 CrossRefGoogle Scholar
  27. 27.
    de Mesquita ML, Ede Paula J, Pessoa C, de Moraes MO, Veras L, Grougnet R, Michel S, Tillequin F, Spindola LS (2009) Cytotoxic activity of Brazilian Cerrado plants used in traditional medicine against cancer cell lines. J Ethnopharmacol 123:439–445. doi: 10.1016/j.jep.2009.03.018 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • R. P. Ramos-Bueno
    • 1
  • M. A. Rincón-Cervera
    • 2
  • M. J. González-Fernández
    • 1
  • J. L. Guil-Guerrero
    • 1
    Email author
  1. 1.Food Technology DivisionUniversity of AlmeríaAlmeríaSpain
  2. 2.Institute of Nutrition and Food TechnologyUniversity of ChileSantiagoChile

Personalised recommendations