Plant Foods for Human Nutrition

, Volume 71, Issue 1, pp 1–12 | Cite as

New Horizons for the Study of Dietary Fiber and Health: A Review

  • Stacey FullerEmail author
  • Eleanor Beck
  • Hayfa Salman
  • Linda Tapsell
Review Article


Dietary fibre has been consumed for centuries with known health benefits, but defining dietary fibre is a real challenge. From a functional perspective, dietary fibre is described as supporting laxation, attenuating blood glucose responses and assisting with cholesterol lowering. The problem is different types of dietary fibre have different effects, and new effects are increasingly observed, such as the influence on gut microbiota. Thus, a single definition may need to be described in more generic terms. Rather than being bound by a few functional definitions, we may need to embrace the possibilities of new horizons, and derive a working definition of dietary fibre based on a set of conceptual principles, rather than the limited definitions we have to date. To begin this process, a review of individual fibre types and their physiological effects would be helpful. Dietary fibre is a complex group of substances, and there is a growing interest in specific effects linked to fibre type. Different fractions of dietary fibre have different physiological properties, yet there is a paucity of literature covering the effects of all fibres. This paper describes a range of individual fibre types and identifies gaps in the literature which may expose new directions for a working definition of dietary fibre.


Dietary fibre Cereal fibre Health benefits Whole grain Cereals Fibre methods 



American Association of Cereal Chemists


Codex Alimentarius Commission


Food and Nutrition Board


European Commission


Food Standards Australia and New Zealand


Degree of polymerization


High molecular weight dietary fibre


Low molecular weight dietary fibre


Dietary fibre


Cardiovascular disease






Molecular weight




Short chain fatty acid


High density lipoprotein


Low density lipoprotein


Very low density lipoprotein






Resistant starch


Gastric inhibitory protein


Area under the curve


Food and Drug Administration


European Food Safety Authority


Arabinoxylan oligosaccharides


Body mass index


Compliance with Ethical Standards

LT is a member of the California Walnuts Commission Science Advisory Committee and a member of the McCormick Science Institute Advisory Committee.

Conflict of Interest

The other authors have no conflict of interest to declare.

Human and Animal Rights

This article does not contain any studies with human or animal subjects.


  1. 1.
    Dhingra D, Michael M, Rajput H, Patil RT (2012) Dietary fibre in foods: a review. J Food Sci Technol 49(3):255–266. doi: 10.1007/s13197-011-0365-5 CrossRefGoogle Scholar
  2. 2.
    Tungland B, Meyer D (2002) Nondigestible oligo- and polysaccharides (dietary fiber): their physiology and role in human health and food. Compr Rev Food Sci Food Saf 1(3):90–109CrossRefGoogle Scholar
  3. 3.
    Buttriss J, Stokes C (2008) Dietary fibre and health: an overview. Nutr Bull 33(3):186–200CrossRefGoogle Scholar
  4. 4.
    Hipsley EH (1953) Dietary 'fibre' and pregnancy toxaemia. BMJ 2(4833):420CrossRefGoogle Scholar
  5. 5.
    DeVries JW (2003) On defining dietary fibre. Proc Nutr Soc 62(01):37–43CrossRefGoogle Scholar
  6. 6.
    Pomeroy S, Tupper R, Cehun-Aders M, Nestel P (2001) Oat b-glucan lowers total and LDL-cholesterol. Aust J Nutr Diet 58:51–55Google Scholar
  7. 7.
    Mudgil D, Barak S (2013) Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber: a review. Int J Biol Macromol 61:1–6CrossRefGoogle Scholar
  8. 8.
    Lunn J, Buttriss J (2007) Carbohydrates and dietary fibre. Nutr Bull 32(1):21–64CrossRefGoogle Scholar
  9. 9.
    Broekaert WF, Courtin CM, Verbeke K, Van de Wiele T, Verstraete W, Delcour JA (2011) Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit Rev Food Sci Nutr 51(2):178–194CrossRefGoogle Scholar
  10. 10.
    FAO/WHO (2010) (CODEX) Guidelines on Nutrition Labelling CAC/GL 2-1985Google Scholar
  11. 11.
    Mann J, Cummings J (2009) Possible implications for health of the different definitions of dietary fibre. Nutr Metab Cardiovasc Dis 19(3):226–229CrossRefGoogle Scholar
  12. 12.
    National Health and Medical Research Council (2005) Nutrient reference values for Australia and New Zealand. CanberraGoogle Scholar
  13. 13.
    Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. Nutrients 5(4):1417–1435. doi: 10.3390/nu5041417 CrossRefGoogle Scholar
  14. 14.
    Jones JM (2013) Dietary fiber future directions: integrating new definitions and findings to inform nutrition research and communication 12. Adv Nutr 4(1):8–15. doi: 10.3945/an.112.002907 CrossRefGoogle Scholar
  15. 15.
    de Menezes EW, Giuntini EB, Dan MCT, Sardá FAH, Lajolo FM (2013) Codex dietary fibre definition- Justification for inclusion of carbohydrates from 3 to 9 degrees of polymerisation. Food Chem 140(3):581–585Google Scholar
  16. 16.
    McCleary BV, Sloane N, Draga A, Lazewska I (2013) Measurement of total dietary fiber using AOAC method 2009.01 (AACC international approved method 32-45.01): evaluation and updates. Cereal Chem 90(4):396–414CrossRefGoogle Scholar
  17. 17.
    Food Standards Australia and New Zealand (2015) Australia New Zealand Food Standards Code - Standard 1.2.8 - Nutrition Information Requirements Food Standards Australia and New Zealand, CanberraGoogle Scholar
  18. 18.
    McCleary BV (2007) An integrated procedure for the measurement of total dietary fibre (including resistant starch), non-digestible oligosaccharides and available carbohydrates. Anal Bioanal Chem 389(1):291–308CrossRefGoogle Scholar
  19. 19.
    Westenbrink S, Brunt K, van der Kamp J-W (2013) Dietary fibre: challenges in production and use of food composition data. Food Chem 140(3):562–567CrossRefGoogle Scholar
  20. 20.
    McCleary BV, DeVries JW, Rader JI, Cohen G, Prosky L, Mugford DC, Champ M, Okuma K (2012) Determination of insoluble, soluble, and total dietary fiber (CODEX definition) by enzymatic-gravimetric method and liquid chromatography: collaborative study. J AOAC Int 95(3):824–844CrossRefGoogle Scholar
  21. 21.
    Brunt K, Sanders P (2013) Improvement of the AOAC 2009.01 total dietary fibre method for bread and other high starch containing matrices. Food Chem 140(3):574–580CrossRefGoogle Scholar
  22. 22.
    Huang T, Xu M, Lee A, Cho S, Qi L (2015) Consumption of whole grains and cereal fiber and total and cause-specific mortality: prospective analysis of 367, 442 individuals. BMC Med 13(1):59CrossRefGoogle Scholar
  23. 23.
    Fardet A (2010) New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? Nutr Res Rev 23(01):65–134CrossRefGoogle Scholar
  24. 24.
    Falcón-Villa MR, Barrón-Hoyos JM, Cinco-Moroyoqui FJ (2014) Commercial breakfast cereals available in Mexican markets and their contribution in dietary fiber, β-glucans and protein quality by rat bioassays. Plant Foods Hum Nutr 69(3):222–227CrossRefGoogle Scholar
  25. 25.
    Kim Y, Je Y (2014) Dietary fiber intake and total mortality: a meta-analysis of prospective cohort studies. Am J Epidemiol 180(6):565–573CrossRefGoogle Scholar
  26. 26.
    Dahl WJ, Lockert EA, Cammer AL, Whiting SJ (2005) Effects of flax fiber on laxation and glycemic response in healthy volunteers. J Med Food 8(4):508–511CrossRefGoogle Scholar
  27. 27.
    Marlett JA, McBurney MI, Slavin JL (2002) Position of the American Dietetic Association: health implications of dietary fiber. J Am Diet Assoc 102(7):993–1000CrossRefGoogle Scholar
  28. 28.
    Kleessen B, Sykura B, Zunft H-J, Blaut M (1997) Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. Am J Clin Nutr 65(5):1397–1402Google Scholar
  29. 29.
    Slavin J, Savarino V, Paredes-Diaz A, Fotopoulos G (2009) A review of the role of soluble fiber in health with specific reference to wheat dextrin. J Int Med Res 37(1):1–17CrossRefGoogle Scholar
  30. 30.
    Garcia A, Otto B, Reich S, Weickert M, Steiniger J, Machowetz A, Rudovich N, Möhlig M, Katz N, Speth M (2007) Arabinoxylan consumption decreases postprandial serum glucose, serum insulin and plasma total ghrelin response in subjects with impaired glucose tolerance. Eur J Clin Nutr 61(3):334–341CrossRefGoogle Scholar
  31. 31.
    Dikeman CL, Murphy MR, Fahey GC (2006) Dietary fibers affect viscosity of solutions and simulated human gastric and small intestinal digesta. J Nutr 136(4):913–919Google Scholar
  32. 32.
    Behall KM, Scholfield DJ, Hallfrisch JG (2006) Barley β-glucan reduces plasma glucose and insulin responses compared with resistant starch in men. Nutr Res 26(12):644–650CrossRefGoogle Scholar
  33. 33.
    Luo J, Rizkalla SW, Alamowitch C, Boussairi A, Blayo A, Barry J-L, Laffitte A, Guyon F, Bornet F, Slama G (1996) Chronic consumption of short-chain fructooligosaccharides by healthy subjects decreased basal hepatic glucose production but had no effect on insulin-stimulated glucose metabolism. Am J Clin Nutr 63(6):939–945Google Scholar
  34. 34.
    Li S, Guerin-Deremaux L, Pochat M, Wils D, Reifer C, Miller LE (2010) NUTRIOSE dietary fiber supplementation improves insulin resistance and determinants of metabolic syndrome in overweight men: a double-blind, randomized, placebo-controlled study. Appl Physiol Nutr Metab 35(6):773–782CrossRefGoogle Scholar
  35. 35.
    Kwak JH, Paik JK, Kim HI, Kim OY, Shin DY, Kim H-J, Lee JH, Lee JH (2012) Dietary treatment with rice containing resistant starch improves markers of endothelial function with reduction of postprandial blood glucose and oxidative stress in patients with prediabetes or newly diagnosed type 2 diabetes. Atherosclerosis 224(2):457–464CrossRefGoogle Scholar
  36. 36.
    Raben A, Tagliabue A, Christensen NJ, Madsen J, Holst JJ, Astrup A (1994) Resistant starch: the effect on postprandial glycemia, hormonal response, and satiety. Am J Clin Nutr 60(4):544–551Google Scholar
  37. 37.
    Behall KM, Scholfield DJ, Hallfrisch JG, Liljeberg-Elmståhl HG (2006) Consumption of both resistant starch and β-glucan improves postprandial plasma glucose and insulin in women. Diabetes Care 29(5):976–981CrossRefGoogle Scholar
  38. 38.
    Othman RA, Moghadasian MH, Jones PJ (2011) Cholesterol-lowering effects of oat B-glucan. Nutr Rev 69(6):299–309CrossRefGoogle Scholar
  39. 39.
    Whitehead A, Beck EJ, Tosh S, Wolever TM (2014) Cholesterol-lowering effects of oat β-glucan: a meta-analysis of randomized controlled trials. Am J Clin Nutr 100(6):1413–1421CrossRefGoogle Scholar
  40. 40.
    Brown L, Rosner B, Willett WW, Sacks FM (1999) Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr 69(1):30–42Google Scholar
  41. 41.
    Brouns F, Theuwissen E, Adam A, Bell M, Berger A, Mensink R (2012) Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women. Eur J Clin Nutr 66(5):591–599CrossRefGoogle Scholar
  42. 42.
    Wei Z, Wang H, Chen X, Wang B, Rong Z, Su B, Chen H (2009) Time-and dose-dependent effect of psyllium on serum lipids in mild-to-moderate hypercholesterolemia: a meta-analysis of controlled clinical trials. Eur J Clin Nutr 63(7):821–827CrossRefGoogle Scholar
  43. 43.
    Yamashita K, Kawai K, Itakura M (1984) Effects of fructo-oligosaccharides on blood glucose and serum lipids in diabetic subjects. Nutr Res 4(6):961–966CrossRefGoogle Scholar
  44. 44.
    Agarwal V, Chauhan B (1988) A study on composition and hypolipidemic effect of dietary fibre from some plant foods. Plant Foods Hum Nutr 38(2):189–197CrossRefGoogle Scholar
  45. 45.
    Castellanos-Jankiewicz A, del Bosque-Plata L, Tejero ME (2014) Combined effect of plant sterols and dietary fiber for the treatment of hypercholesterolemia. Plant Foods Hum Nutr 69(2):93–100CrossRefGoogle Scholar
  46. 46.
    Gong J, Yang C (2012) Advances in the methods for studying gut microbiota and their relevance to the research of dietary fiber functions. Food Res Int 48(2):916–929CrossRefGoogle Scholar
  47. 47.
    Brownawell AM, Caers W, Gibson GR, Kendall CW, Lewis KD, Ringel Y, Slavin JL (2012) Prebiotics and the health benefits of fiber: current regulatory status, future research, and goals. J Nutr 142(5):962–974CrossRefGoogle Scholar
  48. 48.
    Gibson GR, Beatty ER, Wang X, Cummings JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterol 108(4):975–982CrossRefGoogle Scholar
  49. 49.
    Ramnani P, Gaudier E, Bingham M, van Bruggen P, Tuohy KM, Gibson GR (2010) Prebiotic effect of fruit and vegetable shots containing Jerusalem artichoke inulin: a human intervention study. Brit J Nutr 104(02):233–240. doi: 10.1017/S000711451000036X CrossRefGoogle Scholar
  50. 50.
    Elia M, Cummings J (2007) Physiological aspects of energy metabolism and gastrointestinal effects of carbohydrates. Eur J Clin Nutr 61:S40–S74CrossRefGoogle Scholar
  51. 51.
    Niness KR (1999) Inulin and oligofructose: what are they? J Nutr 129(7):1402S–1406sGoogle Scholar
  52. 52.
    Jie Z, Bang-Yao L, Ming-Jie X, Hai-Wei L, Zu-Kang Z, Ting-Song W, Craig SA (2000) Studies on the effects of polydextrose intake on physiologic functions in Chinese people. Am J Clin Nutr 72(6):1503–1509Google Scholar
  53. 53.
    Pasman W, Wils D, Saniez M, Kardinaal A (2006) Long-term gastrointestinal tolerance of NUTRIOSE® FB in healthy men. Eur J Clin Nutr 60(8):1024–1034CrossRefGoogle Scholar
  54. 54.
    Lefranc-Millot C, Guérin-Deremaux L, Wils D, Neut C, Miller L, Saniez-Degrave M (2012) Impact of a resistant dextrin on intestinal ecology: how altering the digestive ecosystem with NUTRIOSE®, a soluble fibre with prebiotic properties, may be beneficial for health. J Int Med Res 40(1):211–224CrossRefGoogle Scholar
  55. 55.
    Topping DL, Fukushima M, Bird AR (2003) Resistant starch as a prebiotic and synbiotic: state of the art. Proc Nutr Soc 62(01):171–176CrossRefGoogle Scholar
  56. 56.
    Cummings JH, Beatty ER, Kingman SM, Bingham SA, Englyst HN (1996) Digestion and physiological properties of resistant starch in the human large bowel. Brit J Nutr 75(05):733–747CrossRefGoogle Scholar
  57. 57.
    Parnell JA, Reimer RA (2009) Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 89(6):1751–1759CrossRefGoogle Scholar
  58. 58.
    Chambers ES, Viardot A, Psichas A, Morrison DJ, Murphy KG, Zac-Varghese SE, MacDougall K, Preston T, Tedford C, Finlayson GS (2015) Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64:1744–1754. doi: 10.1136/gutjnl-2014-307913 CrossRefGoogle Scholar
  59. 59.
    Ang Z, Er JZ, Ding JL (2015) The short-chain fatty acid receptor GPR43 is transcriptionally regulated by XBP1 in human monocytes. Sci Rep 5:8134. doi: 10.1038/srep08134 CrossRefGoogle Scholar
  60. 60.
    Howarth NC, Saltzman E, Roberts SB (2001) Dietary fiber and weight regulation. Nutr Rev 59(5):129–139CrossRefGoogle Scholar
  61. 61.
    Beck EJ, Tosh SM, Batterham MJ, Tapsell LC, Huang XF (2009) Oat β-glucan increases postprandial cholecystokinin levels, decreases insulin response and extends subjective satiety in overweight subjects. Mol Nutr Food Res 53(10):1343–1351CrossRefGoogle Scholar
  62. 62.
    Pentikäinen S, Karhunen L, Flander L, Katina K, Meynier A, Aymard P, Vinoy S, Poutanen K (2014) Enrichment of biscuits and juice with oat β-glucan enhances postprandial satiety. Appetite 75(4):150–156. doi: 10.1016/j.appet.2014.01.002 CrossRefGoogle Scholar
  63. 63.
    Chang H-C, Huang C-N, Yeh D-M, Wang S-J, Peng C-H, Wang C-J (2013) Oat prevents obesity and abdominal fat distribution, and improves liver function in humans. Plant Foods Hum Nutr 68(1):18–23CrossRefGoogle Scholar
  64. 64.
    Guerin-Deremaux L, Li S, Pochat M, Wils D, Mubasher M, Reifer C, Miller LE (2011) Effects of NUTRIOSE® dietary fiber supplementation on body weight, body composition, energy intake, and hunger in overweight men. Int J Food Sci Nutr 62(6):628–635CrossRefGoogle Scholar
  65. 65.
    Willis HJ, Eldridge AL, Beiseigel J, Thomas W, Slavin JL (2009) Greater satiety response with resistant starch and corn bran in human subjects. Nutr Res 29(2):100–105CrossRefGoogle Scholar
  66. 66.
    Frias AD, Sgarbieri V (1998) Guar gum effects on food intake, blood serum lipids and glucose levels of wistar rats. Plant Foods Hum Nutr 53(1):15–28CrossRefGoogle Scholar
  67. 67.
    Fuentes-Zaragoza E, Riquelme-Navarrete M, Sanchez-Zapata E, Perez-Alvarez J (2010) Resistant starch as functional ingredient: a review. Food Res Int 43(4):931–942CrossRefGoogle Scholar
  68. 68.
    Higgins JA, Brown IL (2013) Resistant starch: a promising dietary agent for the prevention/treatment of inflammatory bowel disease and bowel cancer. Curr Opin Gastroenterol 29(2):190–194CrossRefGoogle Scholar
  69. 69.
    Hylla S, Gostner A, Dusel G, Anger H, Bartram H-P, Christl SU, Kasper H, Scheppach W (1998) Effects of resistant starch on the colon in healthy volunteers: possible implications for cancer prevention. Am J Clin Nutr 67(1):136–142Google Scholar
  70. 70.
    Reddy B, Engle A, Katsifis S, Simi B, Bartram H-P, Perrino P, Mahan C (1989) Biochemical epidemiology of colon cancer: effect of types of dietary fiber on fecal mutagens, acid, and neutral sterols in healthy subjects. Cancer Res 49(16):4629–4635Google Scholar
  71. 71.
    Willats WG, Knox JP, Mikkelsen JD (2006) Pectin: new insights into an old polymer are starting to gel. Trends Food Sci Technol 17(3):97–104CrossRefGoogle Scholar
  72. 72.
    Greenwood DC, Cade JE, White K, Burley VJ, Schorah CJ (2004) The impact of high non-starch polysaccharide intake on serum micronutrient concentrations in a cohort of women. Public Health Nutr 7(04):543–548CrossRefGoogle Scholar
  73. 73.
    Vermorel M, Coudray C, Wils D, Sinaud S, Tressol J, Montaurier C, Vernet J, Brandolini M, Bouteloup-Demange C, Rayssiguier Y (2004) Energy value of a low-digestible carbohydrate, NUTRIOSE® FB, and its impact on magnesium, calcium and zinc apparent absorption and retention in healthy young men. Eur J Clin Nutr 43(6):344–352CrossRefGoogle Scholar
  74. 74.
    Lattimer JM, Haub MD (2010) Effects of dietary fiber and its components on metabolic health. Nutrients 2(12):1266–1289CrossRefGoogle Scholar
  75. 75.
    El Khoury D, Cuda C, Luhovyy BL (2012) Anderson GH (2012) beta glucan: health benefits in obesity and metabolic syndrome. J Nutr Metab. doi: 10.1155/2012/851362 Google Scholar
  76. 76.
    Wood PJ (2007) Cereal β-glucans in diet and health. J Cereal Sci 46(3):230–238CrossRefGoogle Scholar
  77. 77.
    Brennan CS, Cleary LJ (2005) The potential use of cereal (1 → 3, 1 → 4)-β-D-glucans as functional food ingredients. J Cereal Sci 42(1):1–13CrossRefGoogle Scholar
  78. 78.
    Mussatto SI, Mancilha IM (2007) Non-digestible oligosaccharides: a review. Carbohydr Polym 68(3):587–597CrossRefGoogle Scholar
  79. 79.
    Carabin IG, Flamm WG (1999) Evaluation of safety of inulin and oligofructose as dietary fiber. Regul Toxicol Pharmacol 30(3):268–282CrossRefGoogle Scholar
  80. 80.
    American Association of Cereal Chemists (2001) The definition of dietary fiber. Report of the dietary fiber committee to the board of directors of the American Association of Cereal Chemists. Cereal Foods World 46(3):112–126Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Stacey Fuller
    • 1
    Email author
  • Eleanor Beck
    • 1
  • Hayfa Salman
    • 2
  • Linda Tapsell
    • 1
  1. 1.School of Medicine, Faculty of Science, Medicine and Health and Illawarra Health and Medical Research InstituteUniversity of WollongongWollongongAustralia
  2. 2.Grain GrowersNorth RydeAustralia

Personalised recommendations