Plant Foods for Human Nutrition

, Volume 71, Issue 1, pp 64–71 | Cite as

Comprehensive Evaluation of Antioxidant Potential of 10 Salvia Species Using High Pressure Methods for the Isolation of Lipophilic and Hydrophilic Plant Fractions

  • Vaida Šulniūtė
  • Ona Ragažinskienė
  • Petras Rimantas VenskutonisEmail author
Original Paper


Common sage (Salvia officinalis) is a well-known source of antioxidants and other bioactive compounds, while many other species within the Salvia genus have been poorly studied. The total content of phenolic compounds (TPC) and antioxidant capacity indicators were evaluated for the extracts of 10 Salvia spp. consecutively isolated by supercritical carbon dioxide (SFE-CO2) and pressurized liquid extraction with ethanol and water. Antioxidant properties of solid plant material were evaluated by the direct antioxidant capacity measurement by the so-called QUENCHER method. Total antioxidant capacity values were calculated by integrating the results obtained for all extracts and the whole plant material. TPC and antioxidant capacity of the extracts were greatly dependent on the plant species and extraction solvent. Ethanol extracts possessed significantly higher antioxidant capacity and TPC comparing to the extracts isolated with other solvents. In general, all studied Salvia species demonstrated strong antioxidant capacity; however, the antioxidant potential of such species as S. forsskaolii and S. verticillata was the highest and comparable with that of S. officinalis. The majority of studied Salvia species may be considered as promising sources of functional ingredients to be used in human nutrition for functional food and nutraceutical formulations.


Antioxidant capacity Salvia spp. QUENCHER antioxidant assay Total phenolic content 



2,2-azobis-(2-amidino-propane) dihydrochloride


2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)


Dry weight of plant


Dry weight of extract


Gallic acid equivalents


Oxygen radical absorbance capacity


Pressurized liquid extraction


Radical scavenging capacity


Supercritical fluid extraction


Trolox equivalents


Trolox equivalent antioxidant capacity


Total phenolic content


6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid



This study was supported by the Research Council of Lithuania and National Paying Agency under the Ministry of Agriculture of The Republic of Lithuania (project MT-1131).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interests

Supplementary material

11130_2015_526_MOESM1_ESM.doc (132 kb)
ESM 1 (DOC 132 kb)


  1. 1.
    Pereira C, Barros L, Ferreira ICFR (2015) A comparison of the nutritional contribution of thirty-nine aromatic plants used as condiments and/or herbal infusions. Plant Foods Hum Nutr 70:76–183CrossRefGoogle Scholar
  2. 2.
    Venskutonis PR (2013) Natural antioxidants in food systems. In: Bartosz G (ed) Food oxidants and antioxidants. Chemical, biological and functional properties. CRC Press, Taylor & Francis Group, Boca Raton, pp 235–301. ISBN 978-1-4398-8241-2Google Scholar
  3. 3.
    Vallverdú-Queralt A, Regueiro J, Martínez-Huélamo M, Alvarenga JFR, Leal LN, Lamuela-Raventos RM (2014) A comprehensive study on the phenolic profile of widely used culinary herbs and spices: rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem 154:299–307CrossRefGoogle Scholar
  4. 4.
    Sindhi V, Gupta V, Sharma K, Bhatnagar S, Kumari R, Dhaka N (2013) Potential applications of antioxidants—a review. J Pharm Res 7:828–835Google Scholar
  5. 5.
    Capecka E, Mareczek A, Leja M (2005) Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chem 93:223–226. doi: 10.1016/j.foodchem.2004.09.020 CrossRefGoogle Scholar
  6. 6.
    Bandonienė D, Venskutonis PR, Gruzdienė D, Murkovic M (2002) Antioxidative activity of sage (Salvia officinalis L.), savory (Satureja hortensis L.) and borage (Borago officinalis L.) extracts in rapeseed oil. Eur J Lipid Sci Technol 104:286–292CrossRefGoogle Scholar
  7. 7.
    Baricevic D, Bartol T (2000) The biological/pharmacological activity of the Salvia genus. In: Kintzios SE (ed) The genus Salvia. Harwood Academic Publishers, Amsterdam, pp 143–184Google Scholar
  8. 8.
    Miroddi M, Navarra M, Quattropani MC, Calapai F, Gangemi S, Calapai G (2014) Properties of Salvia species on memory, cognitive impairment and Alzheimer’s disease. CNS Neurosci Ther 20:485–495CrossRefGoogle Scholar
  9. 9.
    Martins N, Barros L, Santos-Buelga C, Henriques M, Silva S, Ferreira ICFR (2015) Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem 170:378–385CrossRefGoogle Scholar
  10. 10.
    Farhat BM, Chaouch-Hamada R, Sotomayor JA, Landoulsi A, Jordán MJ (2014) Antioxidant potential of Salvia officinalis L. residues as affected by the harvesting time. Ind Crops Prod 54:78–85CrossRefGoogle Scholar
  11. 11.
    Upadhyay R, Mishra HN (2014) Antioxidant activity measurement of oleoresin from rosemary and sage. Ind Crops Prod 61:53–459CrossRefGoogle Scholar
  12. 12.
    Kontogianni VG, Tomic G, Nikolic I, Nerantzaki AA, Sayyad N, Stosic-Grujicic S, Stojanovic I, Gerothanassis IP, Tzakos AG (2013) Phytochemical profile of Rosmarinus officinalis and Salvia officinalis extracts and correlation to their antioxidant and anti-proliferative activity. Food Chem 136:120–129CrossRefGoogle Scholar
  13. 13.
    Roby MHH, Sargan MA, Selim KA-H, Khalel KI (2013) Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Ind Crops Prod 43:827–831CrossRefGoogle Scholar
  14. 14.
    Taârit MB, Msaada K, Hosni K, Marzouk B (2012) Fatty acids, phenolic changes and antioxidant activity of clary sage (Salvia sclarea L.) rosette leaves grown under saline conditions. Ind Crops Prod 38:58–63CrossRefGoogle Scholar
  15. 15.
    Orhan IE, Senol FS, Ercetin T, Kahraman A, Celep F, Akaydin G, Sener B, Dogan M (2013) Assessment of anticholinesterase and antioxidant properties of selected sage (Salvia) species with their total phenol and flavonoid contents. Ind Crops Prod 41:21–30CrossRefGoogle Scholar
  16. 16.
    Tepe B, Eminagaoglu O, Akpulat HA, Aydin E (2007) Antioxidant potentials and rosmarinic acid levels of the methanolic extracts of Salvia verticillata (L.) subsp. verticillata and S. verticillata (L.) subsp. amasiaca (Freyn & Bornm.) Bornm. Food Chem 100:985–989CrossRefGoogle Scholar
  17. 17.
    Lopez V, Akerreta S, Casanova E, Garcia-Mina JM, Cavero RY, Calvo MI (2007) In vitro antioxidant and anti-rhizopus activities of Lamiaceae herbal extracts. Plant Foods Hum Nutr 62:151–155CrossRefGoogle Scholar
  18. 18.
    Farhat BM, Chaouch-Hamada R, Sotomayor JA, Landoulsi A, Jordan MJ (2015) Antioxidant properties and evaluation of phytochemical composition of Salvia verbenaca L. extracts at different developmental stages. Plant Foods Hum Nutr 70:15–20CrossRefGoogle Scholar
  19. 19.
    Kemzūraitė A, Venskutonis PR, Baranauskienė R, Navikienė D (2014) Optimization of supercritical CO2 extraction of different anatomical parts of lovage (Levisticum officinale Koch.) using response surface methodology and evaluation of extracts composition. J Supercrit Fluids 87:93–103CrossRefGoogle Scholar
  20. 20.
    Al-Asheh S, Allawzi M, Al-Otoom A, Allaboun H, Al-Zoubi A (2012) Supercritical fluid extraction of useful compounds from sage. Nat Sci 4:544–551. doi: 10.4236/ns.2012.48072 Google Scholar
  21. 21.
    Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am J Enol Viticult 16:144–158.
  22. 22.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolourization assay. Free Radic Biol Med 26:1231–1237CrossRefGoogle Scholar
  23. 23.
    Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L, Hampsch-Woodill M, Huang D, Ou B, Jacob R (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORAC(FL))) of plasma and other biological and food samples. J Agric Food Chem 51:3273–3279CrossRefGoogle Scholar
  24. 24.
    Tikekar RV, Ludescher RD, Karwe MV (2008) Processing stability of squalene in amaranth and antioxidant potential of amaranth extract. J Agric Food Chem 51:10675–10678CrossRefGoogle Scholar
  25. 25.
    Pastoriza S, Delgado-Andrade C, Haro A, Rufián-Henares JA (2011) A physiologic approach to test the global antioxidant response of foods. The GAR method. J Agric Food Chem 129:1926–1932CrossRefGoogle Scholar
  26. 26.
    Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856CrossRefGoogle Scholar
  27. 27.
    Farhat MB, Jordán MJ, Chaouech-Hamada R, Landoulsi A, Sotomayor JA (2009) Variations in essential oil, phenolic compounds and antioxidant activity of Tunisian cultivated Salvia officinalis L. J Agric Food Chem 57:10349–10356CrossRefGoogle Scholar
  28. 28.
    Farhat M, Landoulsi A, Chaouch-Hamada R, Sotomayor JA, Jordán MJ (2013) Phytochemical composition and in vitro antioxidant activity of by-products of Salvia verbenaca L. growing wild in different habitats. Ind Crop Prod 373–379Google Scholar
  29. 29.
    Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302CrossRefGoogle Scholar
  30. 30.
    Porres-Martínez M, González-Burgos E, Accame MEC, Gómez-Serranillos MP (2013) Phytochemical composition, antioxidant and cytoprotective activities of essential oil of Salvia lavandulifolia Vahl. Food Res Int 54:523–531CrossRefGoogle Scholar
  31. 31.
    Shan B, Cai Y, Sun M, Corke H (2005) Antioxidant capacity of 26 spices extracts and characterization of their phenolic constituents. J Agric Food Chem 53:7749–7759CrossRefGoogle Scholar
  32. 32.
    Cosio M, Buratti S, Mannino S, Benedetti S (2006) Use of an electrochemical method to evaluate the antioxidant activity of herb extracts from the Labiateae family. Food Chem 97:725–731CrossRefGoogle Scholar
  33. 33.
    Erdoğan SS, Karik Ü, Hüsnü K, Başer KHC (2014) The determination of antioxidant activity of some sage populations of in the Marmara region. TurkJANS 2:1877–1882.
  34. 34.
    Serpen A, Capuano E, Fogliano V, Gökmen V (2007) A new procedure to measure the antioxidant activity of insoluble food components. J Agric Food Chem 55:7676–7681CrossRefGoogle Scholar
  35. 35.
    Kraujalis P, Venskutonis PR, Kraujalienė V, Pukalskas A (2013) Antioxidant properties and preliminary evaluation of phytochemical composition of different anatomical parts of amaranth. Plant Foods Hum Nutr 68:322–328CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Vaida Šulniūtė
    • 1
  • Ona Ragažinskienė
    • 2
  • Petras Rimantas Venskutonis
    • 1
    Email author
  1. 1.Department of Food Science and TechnologyKaunas University of TechnologyKaunasLithuania
  2. 2.Kaunas Botanical GardenVytautas Magnus UniversityKaunasLithuania

Personalised recommendations