Skip to main content
Log in

Antithrombotic Effects of Amaranthus hypochondriacus Proteins in Rats

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) is a major cause of disability and premature death throughout the world. Diets with antithrombotic components offer a convenient and effective way of preventing and reducing CVD incidence. The aim of the present work was to assess in vivo and ex vivo effects of Amaranthus hypochondriacus proteins on platelet plug formation and coagulation cascade. Amaranth proteins were orally administrated to rats (AG, 8 animals) and bleeding time was determined showing no significant difference compared with control rats (CG, 7 animals). However, results show a strong tendency, suggesting that amaranth proteins are involved in the inhibition of thrombus formation. Non-anticoagulated blood extracted from animals was analyzed with the hemostatometer, where AG parameters obtained were twice the values showed by CG. The clotting tests, thrombin time (TT) and activated partial thromboplastin time (APTT), presented a 17 and 14 % clotting formation increase respectively when comparing AG with CG. The ex-vivo assays confirm the hypothesis inferring that amaranth proteins are a potential antithrombotic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AG:

Rats fed with amaranth proteins

APTT:

Activated partial thromboplastin time

BT:

Bleeding time

CG:

Rats that were fed with control diet

CVD:

Cardiovascular disease

HG:

Rats injected with heparin

PT:

Prothrombin time

TT:

Thrombin time

References

  1. World Health Organization 2010 (2011) Global status report on noncommunicable diseases. http://www.who.int/nmh/publications/ncd_report2010/en/. Accessed 7 Aug 2012

  2. Shaidi F (2004) Functional foods: their role in health promotion and disease prevention. J Food Sci 69:146–149

    Article  Google Scholar 

  3. Martínez-Maqueda D, Miralles B, Recio I, Hernández-Ledesma B (2012) Antihypertensive peptides from food proteins: a review. Food Funct 3:350–361

    Article  Google Scholar 

  4. Mojica L, González de Mejía E (2015) Characterization and comparison of protein and peptide profiles and their biological activities of improved common bean cultivars (Phaseolus vulgaris L.) from Mexico and Brazil. Plant Foods Hum Nutr 70:105–112

  5. Hartmann R, Meisel H (2007) Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol 18:163–169

    Article  CAS  Google Scholar 

  6. Silva-Sánchez C, Barba De La Rosa AP, León-Galván MF, De Lumen BO, De León-Rodríguez A., González De Mejía E (2008) Bioactive peptides in amaranth (Amaranthus hypochondriacus) seed. J Agric Food Chem 56:1233–1240

    Article  Google Scholar 

  7. Orsini Delgado MC, Galleano M, Añón MC, Tironi VA (2015) Amaranth peptides from simulated gastrointestinal digestion: antioxidant activity against reactive species. Plant Foods Hum Nutr 70:27–34

    Article  Google Scholar 

  8. Sabbione AC, Scilingo A, Añón MC (2015) Potential antithrombotic activity detected in amaranth proteins and its hydrolysates. LWT Food Sci Technol 60:171–177

    Article  CAS  Google Scholar 

  9. Shimizu M, Sawashita N, Morimatsu F, Ichikawa J, Taguchi Y, Ijiri Y, Yamamoto J (2009) Antithrombotic papain-hydrolyzed peptides isolated from pork meat. Thromb Res 123:753–757

    Article  CAS  Google Scholar 

  10. Zhang SB, Wang Z, Xu SY (2008) Antioxidant and antithrombotic activities of rapeseed peptides. J Am Oil Chem Soc 85:521–527

    Article  CAS  Google Scholar 

  11. Yang WG, Wang Z, Xu SY (2007) A new method for determination of antithrombotic activity of egg white protein hydrolysate by microplate reader. Chin Chem Lett 18:449–451

    Article  CAS  Google Scholar 

  12. Martínez NE, Añón MC (1996) Composition and structural characterization of amaranth proteins isolates. An electrophoretic and calorimetric study J Agric Food Chem 44:2523–2530

    Article  Google Scholar 

  13. Paredes-López O (1994) Amaranth: biology, chemistry and technology. CRC Press, Boca Raton, FL

  14. Reeves PG, Nielses FH, Fahey GC (1993) AIN-93 purified diets for laboratory rodents: final report of the American institute of nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951

    CAS  Google Scholar 

  15. Stenberg PE, Barrie RJ, Pestina TI, Steward SA, Arnold JT, Murti AK, Hutson NK, Jackson CW (1998) Prolonged bleeding time with defective platelet filopodia formation in the wistar Furth rat. Blood 91:1599–1608

    CAS  Google Scholar 

  16. Görög P, Ahmed A (1984) Haemostatometer: a new in vitro technique for assessing haemostatic activity blood. Thromb Res 34:341–357

    Article  Google Scholar 

  17. Yamada K, Naemura A, Sawashita N, Noguchi Y, Yamamoto J (2004) An onion variety has natural antithrombotic effect as assessed by thrombosis/thrombolysis models in rodents. Thromb Res 114:213–220

    Article  CAS  Google Scholar 

  18. Satake T, Kamiya K, An Y, Oishi Nee Taka T, Yamamoto J (2007) The antithrombotic active constituents from Centella asiatica. Biol Pharm Bull 30:935–940

    Article  CAS  Google Scholar 

  19. Kalyani B, Manjula K, Kusuma DL (2012) Food consumption pattern and weight gain of albino rats fed with irradiated and non-irradiated diet. Indian J L Sci 2:73–75

    Google Scholar 

  20. Cossio-Bolaños M, Gómez Campos R, Vargas Vitoria R, Hochmuller Fogaça RT, de Arruda M (2013) Curvas de referencia para valorar el crecimiento físico de ratas machos wistar. Nutr Hosp 28:2151–2156 (In Spanish)

  21. Day SM, Reeve JL, Myers DD, Fay WP (2004) Murine thrombosis models. Thromb Haemost 92:486–494

    CAS  Google Scholar 

  22. Lavelle SM, MacIomhair M (1998) Bleeding times and the antithrombotic effects of high-dose aspirin, hirudin and heparins in the rat. Ir J Med Sci 167:216–220

    Article  CAS  Google Scholar 

  23. Liu Y, Jennings NL, Dart AM, Du XJ (2012) Standardizing a simpler, more sensitive and accurate tail bleeding assay in mice. World J Exp Med 2:30–36

    Article  CAS  Google Scholar 

  24. Kitazato K, Kitazato KT, Sasaki E, Minamiguchi K, Nagase H (2003) Prolonged bleeding time induced by anticoagulant glycosaminoglycans in dogs is associated with the inhibition of thrombin-induced platelet aggregation. Thromb Res 112:83–91

    Article  Google Scholar 

  25. Brass LF (2003) Thrombin and platelet activation. Chest J 124:18–25

    Article  Google Scholar 

  26. Rinaldi G, Bohr DF (1989) Potassium-induced relaxation of arteries in hypertension: modulation by extracellular calcium. American Physiological Society 256:H707–H712

    CAS  Google Scholar 

  27. Fritz M, Vecchi B, Rinaldi G, Añón MC (2011) Amaranth seed protein hydrolysates have in vivo and in vitro antihypertensive activity. Food Chem 126:878–884

    Article  CAS  Google Scholar 

  28. Yamamoto J, Taka T, Nakajima S, Ueda M, Sugimoto E, Sasaki Y, Muraki T, Seki T, Watanabe S (2003) Tomatoes have natural anti-thrombotic effects. Br J Nutr 90:1031–1038

    Article  CAS  Google Scholar 

  29. Jolles P, Levy-Toledano S, Fiat AM, Soria C, Gillessen D, Thomaidis A (1986) Analogy between fibrinogen and casein effect of an undecapeptide isolated from kappa-casein on platelet function. Eur J Biochem 158:379–382

    Article  CAS  Google Scholar 

  30. Chabance B, Marteau P, Rambaud JC, Migliore-Samour D, Boynard M, Perrotin P, Guillet R, Jollès P, Fiat AM (1998) Casein peptide release and passage to the blood in humans during digestion of milk or yogurt. Biochimie 80:155–165

    Article  CAS  Google Scholar 

  31. Palm M, Frankenberg L, Johansson M, Jalkesten E (1997) Evaluation of coagulation tests in mouse plasma. Comp Haematol Int 7:243–246

    Article  Google Scholar 

  32. Prezoto BC, Maffei FHA, Mattar L, Chudzinski-Tavassi AM, Curi PR (2002) Antithrombotic effect of Lonomia obliqua caterpillar bristle extract on experimental venous thrombosis. Braz J Med Biol Res 35:703–712

    Article  CAS  Google Scholar 

  33. Cho HR, Choi HS (2003) Effects of Anticoagulant from Spirodela polyrhiza in Rats. Biosci Biotechnol Biochem 67:881–883

  34. You WK, Choi WS, Koh YS, Shin HC, Jang Y, Chung KH (2004) Functional characterization of recombinant batroxobin, a snake venom thrombin-like enzyme, expressed from Pichia pastoris. FEBS Lett 571:67–73

    Article  CAS  Google Scholar 

  35. Lemini C, Jaimez R, Medina-Jiménez M, Ávila ME (2012) Gender differences in response to chronic treatment with 17β-oestradiol and 17β-aminoestrogen pentolame on hemostasis in rats. Indian J Pharmacol 44:749–753

    Article  CAS  Google Scholar 

  36. Huang LF, Shi HL, Gao B, Wu H, Yang L, Wu XJ, Wang ZT (2014) Decichine enhances hemostasis of activated platelets via AMPA receptors. Thromb Res 133:848–854

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by PIP 11220110101109. We also wish to thank Mariana M. Gonzalez from Facultad de Ciencias Exactas, for helping us during the realization of the clotting tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana A. Scilingo.

Ethics declarations

Conflict of Interest

Authors, A.C. Sabbione, G. Rinaldi, M.C. Añón, and A. Scilingo, declare that they have no conflict of interest.

Ethical Approval

All experimental procedures were in accordance with the ethical standards approved by CICUAL, Facultad de Ciencias Médicas de la Universidad Nacional de La Plata Ethics Committee. All efforts were made to minimize the number of animals used and their suffering. This article does not contain studies with human participants performed by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabbione, A.C., Rinaldi, G., Añón, M.C. et al. Antithrombotic Effects of Amaranthus hypochondriacus Proteins in Rats. Plant Foods Hum Nutr 71, 19–27 (2016). https://doi.org/10.1007/s11130-015-0517-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-015-0517-2

Keywords

Navigation