Skip to main content
Log in

Overexpression of Folate Biosynthesis Genes in Rice (Oryza sativa L.) and Evaluation of Their Impact on Seed Folate Content

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Folate (vitamin B9) deficiency is a global health problem especially in developing countries where the major staple foods such as rice contain extremely low folates. Biofortification of rice could be an alternative complement way to fight folate deficiency. In this study, we evaluated the availability of the genes in each step of folate biosynthesis pathway for rice folate enhancement in the japonica variety kitaake genetic background. The first enzymes GTP cyclohydrolase I (GTPCHI) and aminodeoxychorismate synthase (ADCS) in the pterin and para-aminobenzoate branches resulted in significant increase in seed folate content, respectively (P < 0.01). Overexpression of two closely related enzymes dihydrofolate synthase (DHFS) and folypolyglutamate synthase (FPGS), which perform the first and further additions of glutamates, produced slightly increase in seed folate content separately. The GTPCHI transgene was combined with each of the other transgenes except ADCS to investigate the effects of gene stacking on seed folate accumulation. Seed folate contents in the gene-stacked plants were higher than the individual low-folate transgenic parents, but lower than the high-folate GTPCHI transgenic lines, pointing to an inadequate supply of para-aminobenzoic acid (PABA) precursor initiated by ADCS in constraining folate overproduction in gene-stacked plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scott J, Rébeillé F, Fletcher J (2000) Folic acid and folates: the feasibility for nutritional enhancement in plant foods. J Sci Food Agric 80(7):795–824

    Article  CAS  Google Scholar 

  2. Castorena-Torres F, Ramos-Parra PA, Hernández-Méndez RV et al (2014) Natural folates from biofortified tomato and synthetic 5-methyl-tetrahydrofolate display equivalent bioavailability in a murine model. Plant Foods Hum Nutr 69(1):57–64

    Article  CAS  Google Scholar 

  3. Hegedüs M, Pedersen B, Eggum BO (1985) The influence of milling on the nutritive value of flour from cereal grains. 7. Vitamins and tryptophan. Plant Foods Hum Nutr 35(2):175–180

    Article  Google Scholar 

  4. Geisel J (2003) Folic acid and neural tube defects in pregnancy: a review. J Perinatal Neonatal Nurs 17(4):268–279

    Article  Google Scholar 

  5. Kim YI, Fawaz K, Knox T et al (1998) Colonic mucosal concentrations of folate correlate well with blood measurements of folate status in persons with colorectal polyps. Am J Clin Nutr 68(4):866–872

    CAS  Google Scholar 

  6. Ramos MI, Allen LH, Mungas DM et al (2005) Low folate status is associated with impaired cognitive function and dementia in the Sacramento area Latino study on aging. Am J Clin Nutr 82(6):1346–1352

    CAS  Google Scholar 

  7. Choi SW, Friso S (2005) Interactions between folate and aging for carcinogenesis. Clin Chem Lab Med 43(10):1151–1157

    Article  CAS  Google Scholar 

  8. Bekaert S, Storozhenko S, Mehrshahi P et al (2008) Folate biofortification in food plants. Trends Plant Sci 13(1):28–35

    Article  CAS  Google Scholar 

  9. Ravanel S, Cherest H, Jabrin S et al (2001) Tetrahydrofolate biosynthesis in plants: molecular and functional characterization of dihydrofolate synthetase and three isoforms of folylpolyglutamate synthetase in Arabidopsis thaliana. Proc Natl Acad Sci U S A 98(26):15360–15365

    Article  CAS  Google Scholar 

  10. Storozhenko S, Ravanel S, Zhang GF et al (2005) Folate enhancement in staple crops by metabolic engineering. Trends Food Sci Technol 16(6):271–281

    Article  CAS  Google Scholar 

  11. Storozhenko S, De Brouwer V, Volckaert M et al (2007) Folate fortification of rice by metabolic engineering. Nat Biotechnol 25(11):1277–1279

    Article  CAS  Google Scholar 

  12. Díaz de la Garza R, Gregory JF, Hanson AD (2007) Folate biofortification of tomato fruit. Proc Natl Acad Sci U S A 104(10):4218–4222

    Article  Google Scholar 

  13. Gillies SA, McIntosh SR, Henry RJ (2008) A cereal crop with enhanced folate: rice transgenic for wheat HPPK/DHPS. Presented at ComBio 2008, Canberra, Australia

  14. Akhtar TA, Orsomando G, Mehrshahi P et al (2010) A central role for γ-glutamyl hydrolases in plant folate homeostasis. Plant J 64(2):256–266

    Article  CAS  Google Scholar 

  15. Sybesma W, Starrenburg M, Kleerebezem M et al (2003) Increased production of folate by metabolic engineering of Lactococcus lactis. Appl Environ Microbiol 69(6):3069–3076

    Article  CAS  Google Scholar 

  16. Kato T, Goto Y, Ono K et al (2005) Expression of a major house dust mite allergen gene from Dermatophagoides farinae in Lotus japonicus accession Miyakojima MG-20. J Biosci Bioeng 99(2):165–168

    Article  CAS  Google Scholar 

  17. Suzuki Y, Makino A, Mae T (2001) An efficient method for extraction of RNA from rice leaves at different ages using benzyl chloride. J Exp Bot 52(360):1575–1579

    Article  CAS  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 < sup > − ΔΔCT</sup > method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  19. Dong W, Cheng Z, Wang X et al (2011) Determination of folate content in rice germplasm (Oryza sativa L.) using tri-enzyme extraction and microbiological assays. Int J Food Sci Nutr 62(5):537–543

    Article  CAS  Google Scholar 

  20. De Brouwer V, Storozhenko S, Van De Steene JC et al (2008) Optimisation and validation of a liquid chromatography-tandem mass spectrometry method for folates in rice. J Chromatogr A 1215(1):125–132

    Article  Google Scholar 

  21. Mouillon JM, Ravanel S, Douce R et al (2002) Folate synthesis in higher-plant mitochondria: coupling between the dihydropterin pyrophosphokinase and the dihydropteroate synthase activities. Biochem J 363:313–319

    Article  CAS  Google Scholar 

  22. Rébeillé F, Macherel D, Mouillon JM et al (1997) Folate biosynthesis in higher plants: purification and molecular cloning of a bifunctional 6-hydroxymethyl-7, 8-dihydropterin pyrophosphokinase/7, 8-dihydropteroate synthase localized in mitochondria. EMBO J 16(5):947–957

    Article  Google Scholar 

  23. Díaz de la Garza R, Quinlivan EP, Klaus SMJ et al (2004) Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc Natl Acad Sci U S A 101(38):13720–13725

    Article  Google Scholar 

  24. Hossain T, Rosenberg I, Selhub J et al (2004) Enhancement of folates in plants through metabolic engineering. Proc Natl Acad Sci U S A 101(14):5158–5163

    Article  CAS  Google Scholar 

  25. Naqvi S, Zhu C, Farre G et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106(19):7762–7767

    Article  CAS  Google Scholar 

  26. Nunes ACS, Kalkmann DC, Aragao FJL (2009) Folate biofortification of lettuce by expression of a codon optimized chicken GTP cyclohydrolase I gene. Transgenic Res 18(5):661–667

    Article  CAS  Google Scholar 

  27. Dong W, Cheng Z, Xu J et al. (2013) Identification of QTLs underlying folate content in milled rice. J Integr Agr (13)9: 1827–1834. doi:10.1016/S2095-3119

  28. Blancquaert D, Van Daele J, Storozhenko S et al (2013) Rice folate enhancement through metabolic engineering has an impact on rice seed metabolism, but does not affect the expression of the endogenous folate biosynthesis genes. Plant Mol Biol 83(4–5):329–349

    Article  CAS  Google Scholar 

  29. Puthusseri B, Divya P, Lokesh V et al (2012) Enhancement of folate content and its stability using food grade elicitors in coriander (Coriandrum sativum L.). Plant Foods Hum Nutr 67(2):162–170

    Article  CAS  Google Scholar 

  30. Gilliland LU, Magallanes-Lundback M, Hemming C et al (2006) Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana. Proc Natl Acad Sci U S A 103(49):18834–18841

    Article  CAS  Google Scholar 

  31. Raichaudhuri A, Peng M, Naponelli V et al (2009) Plant vacuolar ATP-binding cassette transporters that translocate folates and antifolates in vitro and contribute to antifolate tolerance in vivo. J Biol Chem 284(13):8449–8460

    Article  CAS  Google Scholar 

  32. Eudes A, Bozzo GG, Waller JC et al (2008) Metabolism of the folate precursor p-aminobenzoate in plants: glucose ester formation and vacuolar storage. J Biol Chem 283(22):15451–15459

    Article  CAS  Google Scholar 

  33. Hanson AD, Gregory JF III (2011) Folate biosynthesis, turnover, and transport in plants. Annu Rev Plant Biol 62:105–125

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Basic Research Program of China (Grant no. 2007CB10880-1, 2013CB127000), and Transgenic Science and Technology Program (2013ZX08001-006)

Conflict of Interest

The authors have declared that there were no competing interests.

The manuscript does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-min Wan.

Additional information

Wei Dong, Zhi-jun Cheng and Cai-lin Lei contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 47 kb)

Table S2

(DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, W., Cheng, Zj., Lei, Cl. et al. Overexpression of Folate Biosynthesis Genes in Rice (Oryza sativa L.) and Evaluation of Their Impact on Seed Folate Content. Plant Foods Hum Nutr 69, 379–385 (2014). https://doi.org/10.1007/s11130-014-0450-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-014-0450-9

Keywords

Navigation