Skip to main content
Log in

Effects of Roasting on Phenolic Composition and In vitro Antioxidant Capacity of Australian Grown Faba Beans (Vicia faba L.)

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Faba bean phenolic compounds encompassed phenolic acids, flavonols, proanthocyanidins and anthocyanins. Roasting faba beans for 120 min decreased the total phenolic, flavonoid and proanthocyanidin contents by 42, 42 and 30 %, respectively. Roasting beans for 120 min decreased the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity, total equivalent antioxidant capacity and ferric reducing antioxidant power by 48, 15 and 8 %, respectively. High performance liquid chromatography-post column derivatisation revealed the generation of new phenolic compounds as a result of roasting. Antioxidant mechanism of bean less-polar phenolic compounds was largely based on free radical scavenging activity. The bean phenolic compounds with reducing capability were heat stable. Roasted faba bean extracts (70 % acetone, v/v) were fractionated into relatively polar and non-polar fractions; the latter contributed the majority of the antioxidant capacity. The extracts from beans with different seed coat colours differed in their phenolic compositions, which suggest different levels of potential benefits to health. Although roasting initially lowers the bean antioxidant capacity, prolonged roasting at 150 °C for 60 min and longer causes generation of new phenolic compounds and an increased antioxidant capacity. The findings encourage a wider ultilisation of faba beans for human foods particularly in baked/roasted products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ABTS:

2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)

C3Geq:

Cyaniding 3-glucoside equivalents

CHAeq:

Chlorogenic acid equivalents

DMAC-HCl :

Hydrochloric acidified 4-dimethylaminocinnamaldehyde

DPPH:

2,2-diphenyl-1-picrylhydrazyl

FRAP:

Ferric reducing antioxidant power

GAE:

Gallic acid equivalent

HPLC:

High performance liquid chromatography

HPLC-DAD:

High performance liquid chromatography-diode array detector

HPLC-PCD :

High performance liquid chromatography-post column derivatisation

LSD:

Least significant difference

ORAC:

Oxygen radical absorbance capacity

RE:

Rutin equivalents

TEAC:

Total equivalent antioxidant capacity

TFA:

Trifluoroacetic acid

TFC:

Total flavonoid content

TPC:

Total phenolic content

Tpro:

Total proanthocyanidin content

References

  1. FAO Statistics (2013) Trade. Retrieved on November 11, 2013 from http://faostat.fao.org/site/535/default.aspx#ancor

  2. Macarulla MT, Medina C, De Diego MA, Chavarri M, Zulet MA, Martinez JA, Noel-Suberville C, Higueret P, Portillo MP (2001) Effects of the whole seed and a protein isolate of faba bean (Vicia faba) on the cholesterol metabolism of hypercholesterolaemic rats. Br J Nutr 85:607–614

    Article  CAS  Google Scholar 

  3. Apaydin H, Ertan S, Ozekmekci S (2000) Broad bean (Vicia faba)- a natural source of L-dopa-prolongs “on” periods in patients with Parkinson’s disease who have “on-off” fluctuations. Mov Disord 15:164–166

    Article  CAS  Google Scholar 

  4. Oomah BD, Luc G, Leprelle C, Drover JCG, Harrison JE, Olson M (2011) Phenolics, phytic acid, and phytase in Canadian-grown low-tannin faba bean (Vicia faba L.) genotypes. J Agric Food Chem 59:3763–3771

    Article  CAS  Google Scholar 

  5. Siah SD, Konczak I, Agboola S, Wood JA, Blanchard CL (2012) In vitro investigations of the potential health benefits of Australian-grown faba beans (Vicia faba L.): chemopreventative capacity and inhibitory effects on the angiotensin-converting enzyme, α-glucosidase and lipase. Br J Nutr 108:123S–134S

    Article  Google Scholar 

  6. Vucenik I, Shamsuddin AM (2006) Protection against cancer by dietary IP6 and inositol. Nutr Cancer 55:109–125

    Article  CAS  Google Scholar 

  7. Asensi M, Ortega A, Mena S, Feddi F, Estrela JM (2011) Natural polyphenols in cancer therapy. Crit Rev Clin Lab Sci 48:197–216

    Article  CAS  Google Scholar 

  8. Anekonda TS, Wadsworth TL, Sabin R, Frahler K, Harris C, Petriko B, Ralle M, Woltjer R, Quinn JF (2011) Phytic acid as a potential treatment for Alzheimer’s pathology: evidence from animal and in vitro models. J Alzheimers Dis 23:21–35

    CAS  Google Scholar 

  9. Randhir R, Shetty K (2004) Microwave-induced stimulation of L-DOPA, phenolics and antioxidant activity in fava bean (Vicia faba) for Parkinson’s diet. Process Biochem 39:1775–1784

    Article  CAS  Google Scholar 

  10. Siah S, Wood JA, Agboola S, Konczak I, Blanchard CL (2013) Effects of soaking, boiling and autoclaving on the phenolic contents and antioxidant activities of faba beans (Vicia faba L.) differing in seed coat colours. Food Chem 142:461–468

    Article  Google Scholar 

  11. Wolosiak R, Worobiej E, Piecyk M, Druzynska B, Nowak D, Lewicki PP (2010) Activities of amine and phenolic antioxidants and their changes in broad beans (Vicia faba) after freezing and steam cooking. Int J Food Sci Technol 45:29–37

    Article  CAS  Google Scholar 

  12. Baoteng J, Verghese M, Walker LT, Ogutu S (2008) Effect of processing on antioxidant contents in selected dry beans (Phaseolus spp. L.). LWT Food Sci Technol 41:1541–1547. doi:10.1016/j.lwt.2007.11.025

    Article  Google Scholar 

  13. Siddhuraju P (2006) The antioxidant activity and free radical-scavenging capacity of phenolics of raw and dry heated moth bean (Vigna aconitifolia) (Jacq.) Marechal seed extracts. Food Chem 99:149–157

    Article  CAS  Google Scholar 

  14. Nithiyanantham S, Selvakumar S, Siddhuraju P (2012) Total phenolic content and antioxidant activity of two different solvent extracts from raw and processed legumes, Cicer arietinum L. and Pisum sativum L. J Food Compos Anal 27:52–56. doi:10.1016/j.jfca.2012.04.003

    Article  CAS  Google Scholar 

  15. Acar O, Gokmen V, Pellegrini N, Fogliano V (2009) Direct evaluation of the total antioxidant capacity of raw and roasted pulses, nuts and seeds. Eur Food Res Technol 229:961–969

    Article  CAS  Google Scholar 

  16. Merghem R, Jay M, Brun N, Voirin B (2004) Qualitative analysis and HPLC isolation and identification of procyanidins from Vicia faba. Phytochem Anal 15:95–99

    Article  CAS  Google Scholar 

  17. Li Y-G, Tanner G, Larkin P (1996) The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J Sci Food Agric 70:89–101

    Article  CAS  Google Scholar 

  18. Daniel EM, Krupnick AS, Heur Y-H, Blinzler JA, Nims RW, Stoner GD (1989) Extraction, stability and quantitation of ellagic acid in various fruits and nuts. J Food Compos Anal 2:338–349

    Article  CAS  Google Scholar 

  19. Luthria DL, Pastor-Corrales MA (2006) Phenolic acids content of fifteen dry edible bean (Phaseolus vulgaris L.) varieties. J Food Compos Anal 19:205–211

    Article  CAS  Google Scholar 

  20. Konczak I, Zabaras D, Dunstan M, Aguas P (2010) Antioxidant capacity and phenolic compounds in commercially grown native Australian herbs and spices. Food Chem 122:260–266

    Article  CAS  Google Scholar 

  21. Chukwumah Y, Walker L, Vogler B, Verghese M (2007) Changes in the phytochemical composition and profile of raw, boiled, and roasted peanuts. J Agric Food Chem 55:9266–9273

    Article  CAS  Google Scholar 

  22. Aguilera Y, Duenas M, Estrella I, Hernandez T, Benitez V, Esterban RM, Martin-Cabrejas MA (2011) Phenolic profile and antioxidant capacity of chickpeas (Cicer arietinum L.) as affected by a dehydration process. Plant Foods Hum Nutr 66:187–195

    Article  CAS  Google Scholar 

  23. Xu BJ, Chang SKC (2007) A comparative study on phenolic profiles and antioxidant activities of legumes as affected by extraction solvents. J Food Sci 72:159–166

    Article  Google Scholar 

  24. Craft BD, Kosinska A, Amarowicz R, Pegg RB (2010) Antioxidant properties of extracts obtained from raw, dry-roasted, and oil-roasted US peanuts of commercial importance. Plant Foods Hum Nutr 65:311–318

    Article  CAS  Google Scholar 

  25. Arts MJTJ, Haenen GRMM, Wilms LC, Beetstra SAJN, Heijnen CGM, Voss H-P, Bast A (2002) Interactions between flavonoids and proteins: effect on the total antioxidant capacity. J Agric Food Chem 50:1184–1187

    Article  CAS  Google Scholar 

  26. Yu P, Holmes JHG, Leury BJ, Egan AR (1998) Influence of dry roasting on rumen protein degradation characteristics of whole faba bean (Vicia faba) in dairy cows. Asian Australas J Anim Sci 11:35–42, ISSN:1011-2367

    Article  Google Scholar 

  27. Kim HG, Kim GW, Oh H, Yoo SY, Kim YO, Oh MS (2011) Influence of roasting on the antioxidant activity of small black soybean (Glycine max L. Merrill). LWT Food Sci Technol 44:992–998. doi:10.1016/j.lwt.2010.12.011

    Article  CAS  Google Scholar 

  28. Obied HK, Prenzler PD, Robards K (2008) Potent antioxidant biophenols from olive mill waste. Food Chem 111:171–178

    Article  CAS  Google Scholar 

  29. Tarascou I, Souquet JM, Mazauric JP, Carrillo S, Coq S, Cannon F, Fulcrand H, Cheynier V (2010) The hidden face of food phenolic composition. Arch Biochem Biophys 501:16–22

    Article  CAS  Google Scholar 

  30. Jin AL, Ozga JA, Lopes-Lutz D, Schieber A, Reinecke DM (2012) Characterization of proanthocyanidins in pea (Pisum sativum L.), lentil (Lens culinaris L.), and faba bean (Vicia faba L.) seeds. Food Res Int 46:528–535

    Article  CAS  Google Scholar 

  31. Tarascou I, Mazauric J-P, Meudec E, Souquet J-M, Cunningham D, Nojeim S, Cheynier V, Fulcrand H (2011) Characterisation of genuine and derived cranberry proanthocyanidins by LC-ESI-MS. Food Chem 128:802–810

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding was provided by Grains Research & Development Corporation (GRDC Research Code GRS166), Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University) and Food Futures Flagship, CSIRO Food and Nutritional Sciences. The authors thank Jeffrey Paull (University of Adelaide) for providing samples and Steven Harden (NSW Department of Primary Industries) for the statistical analysis assistance.

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siem Siah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 172 kb)

ESM 2

(PDF 192 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siah, S., Konczak, I., Wood, J.A. et al. Effects of Roasting on Phenolic Composition and In vitro Antioxidant Capacity of Australian Grown Faba Beans (Vicia faba L.). Plant Foods Hum Nutr 69, 85–91 (2014). https://doi.org/10.1007/s11130-013-0400-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-013-0400-y

Keywords

Navigation