Skip to main content

Effect of Flavonoids and Saponins Extracted from Black Bean (Phaseolus vulgaris L.) Seed Coats as Cholesterol Micelle Disruptors

Abstract

Strategies for reducing plasma cholesterol have been focused on reducing the absorption or synthesis of cholesterol. The aim of this study was to correlate the content of flavonoids and saponins in black bean (Phaseolus vulgaris L.) seed coats extracts with a potential effect in lowering cholesterol absorption by the inhibition of cholesterol micellar solubility. Extracts with different flavonoids and saponins concentration were obtained from a Box-Behnken design used to optimize extraction temperature, stirring time and solvent composition. Major flavonoids and saponins were quantified by HPLC-PDA-ELSD and confirmed through mass spectrometry. Contrary to the flavonoid content, saponins were correlated to the inhibitory effect of cholesterol micelle solubility as an approach to a potential reduction of cholesterol absorption. Extracts with the highest saponin content strongly inhibited cholesterol micellization with values of 55.4 ± 1.9 %, while stigmasterol used as control, only reached 12 ± 2.3 % at the same concentration (5 mg/ml). The optimal extracting conditions for saponins were 25 °C, during 3 h in 85 % aqueous-methanol. Correlations of inhibitory effect of cholesterol micellar solubility with the content of each identified saponin suggested that the reduction of cholesterol micellization depends on the C-22 substitution of saponins.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

TFC:

Total flavonoid content

TSC:

Total saponin content

References

  1. Jacobson TA, Miller M, Schaefer EJ (2007) Hypertriglyceridemia and cardiovascular risk reduction. Clin Ther 29(5):763–777

    CAS  Article  Google Scholar 

  2. Miranda-Velasquez L, Oranday-Cardenas A, Lozano-Garza H, Rivas-Morales C, Chamorro-Cevallos G, Cruz-Vega DE (2010) Hypocholesterolemic activity from the leaf extracts of Cnidoscolus chayamansa. Plant Foods Hum Nutr 65(4):392–395

    CAS  Article  Google Scholar 

  3. Lee SD, Gershkovich P, Darlington JW, Wasan KM (2012) Inhibition of cholesterol absorption: targeting the intestine. Pharm Res 29(12):3235–3250

    CAS  Article  Google Scholar 

  4. Tiengo A, Motta EMP, Netto FM (2011) Chemical composition and bile acid binding activity of products obtained from amaranth (Amaranthus cruentus) seeds. Plant Foods Hum Nutr 66(4):370–375

    CAS  Article  Google Scholar 

  5. Carr T (2002) Plant sterols alter bile acid metabolism and reduce cholesterol absorption in hamsters fed a beef-based diet. Nutr Res 22(6):745–754

    CAS  Article  Google Scholar 

  6. Guderian DM, Rasmussen HE, Wray CA, Dussault PH, Carr TP (2007) Cholesterol-lowering properties of plant sterols esterified with beef tallow fatty acids in hamsters. Nutr Res 27(5):283–288

    CAS  Article  Google Scholar 

  7. Zhao J, Gershkovich P, Wasan KM (2012) Evaluation of the effect of plant sterols on the intestinal processing of cholesterol using an in vitro lipolysis model. Int J Pharm 436(1–2):707–710

    CAS  Article  Google Scholar 

  8. Aparicio-Fernandez X, Yousef GG, Loarca-Pina G, De Mejia E, Lila MA (2005) Characterization of polyphenolics in the seed coat of Black Jamapa bean (Phaseolus vulgaris L.). J Agric Food Chem 53(11):4615–4622

    CAS  Article  Google Scholar 

  9. Espinosa-Alonso LG, Lygin A, Widholm JM, Valverde ME, Paredes-Lopez O (2006) Polyphenols in wild and weedy Mexican common beans (Phaseolus vulgaris L.). J Agric Food Chem 54(12):4436–4444

    CAS  Article  Google Scholar 

  10. Koh K, Youn JE, Kim H-S (2011) Identification of anthocyanins in black soybean (Glycine max (L.) Merr.) varieties. J Food Sci Technol 49(12):5848–5851

    Google Scholar 

  11. Beninger CW, Hosfield GL (2003) Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. J Agric Food Chem 51(27):7879–7883

    CAS  Article  Google Scholar 

  12. Pitura K (2011) Evaluation of the antioxidant activity of extracts and flavonol glycosides isolated from the seed coats of coloured beans (Phaseolus vulgaris L.). Dissertation, University of Manitoba. http://hdl.handle.net/1993/4794

  13. Cardador-Martínez A, Loarca-Piña G, Oomah BD (2002) Antioxidant activity in common beans (Phaseolus vulgaris L.). J Agric Food Chem 50(24):6975–6980

    Article  Google Scholar 

  14. Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113(9):71–88

    Article  Google Scholar 

  15. Shi J, Arunasalam K, Yeung D, Kakuda Y, Mittal G, Jiang Y (2004) Saponins from edible legumes: chemistry, processing, and health benefits. J Med Food 7(1):67–78

    CAS  Article  Google Scholar 

  16. Guajardo-Flores D, García-Patiño M, Serna-Guerrero D, Gutiérrez-Uribe JA, Serna-Saldívar SO (2012) Characterization and quantification of saponins and flavonoids in sprouts, seed coats and cotyledons of germinated black beans. Food Chem 134(3):1312–1319

    CAS  Article  Google Scholar 

  17. Calvert GD, Blight L, Illman RJ, Topping DL, Potter JD (1981) A trial of the effects of soya-bean flour and soya-bean saponins on plasma lipids, faecal bile acids and neutral sterols in hypercholesterolaemic men. Br J Nutr 45(2):277–281

    CAS  Article  Google Scholar 

  18. Yoshiki Y, Kudou S, Okubo K (1998) Relationship between chemical structures and biological activities of triterpenoid saponins from soybean. Biosci Biotechnol Biochem 62(12):2291–2299

    CAS  Article  Google Scholar 

  19. Nagaoka S, Futamura Y, Miwa K, Awano T, Yamauchi K, Kanamaru Y, Tadashi K, Kuwata T (2001) Identification of novel hypocholesterolemic peptides derived from bovine milk beta-lactoglobulin. Biochem Biophys Res Commun 281(1):11–17

    CAS  Article  Google Scholar 

  20. Zhong F, Liu J, Ma J, Shoemaker CF (2007) Preparation of hypocholesterol peptides from soy protein and their hypocholesterolemic effect in mice. Food Res Int 40(6):661–667

    CAS  Article  Google Scholar 

  21. Ferreira O, Pinho S (2012) Solubility of flavonoids in pure solvents. Ind Eng Chem Res 51(18):6586–6590

    CAS  Article  Google Scholar 

  22. Sagratini G, Caprioli G, Maggi F, Font G, Giardinà D, Mañes J, Meca G, Ricciutelli M, Sirocchi V, Torregiani E, Vittori S (2013) Determination of soyasaponins I and βg in raw and cooked legumes by solid phase extraction (SPE) coupled to liquid chromatography (LC)-mass spectrometry (MS) and assessment of their bioaccessibility by an in vitro digestion model. J Agric Food Chem 61(8):1702–1709

    CAS  Article  Google Scholar 

  23. Adisakwattana S, Intrawangso J, Hemrid A, Chanathong B, Mäkynen K (2012) Extracts of edible plants inhibit pancreatic lipase, cholesterol esterase and cholesterol micellization, and bind bile acids. Food Technol Biotechnol 50(1):11–16

    CAS  Google Scholar 

  24. Megías C, Pedroche J, Del Mar YM, Alaiz M, Girón-Calle J, Millán F, Vioque J (2009) Sunflower protein hydrolysates reduce cholesterol micellar solubility. Plant Foods Hum Nutr 64(2):86–93

    Article  Google Scholar 

  25. Peixoto G, Paula M (2011) Wormlike micellar aggregates of saponins from Ilex paraguariensis A. St. Hil. (mate): a characterisation by Cryo-TEM, rheology, light scattering and small-angle neutron scattering. J Pharm Sci 100(2):536–546

    CAS  Article  Google Scholar 

  26. Mitra S, Dungan S (2001) Cholesterol solubilization in aqueous micellar solutions of quillaja saponin, bile salts, or nonionic surfactants. J Agric Food Chem 49(1):384–394

    CAS  Article  Google Scholar 

  27. Cohn JS, Kamili A, Wat E, Chung RWS, Tandy S (2010) Reduction in intestinal cholesterol absorption by various food components: mechanisms and implications. Atheroscler Suppl 11(1):45–48

    CAS  Article  Google Scholar 

  28. Sotelo A, Sousa H, Sánchez M (1995) Comparative study of the chemical composition of wild and cultivated beans (Phaseolus vulgaris). Plant Foods Hum Nutr 47(2):93–100

    CAS  Article  Google Scholar 

  29. Saha S, Singh G, Mahajan V, Gupta HS (2009) Variability of nutritional and cooking quality in bean (Phaseolus vulgaris L) as a function of genotype. Plant Foods Hum Nutr 64(2):174–180

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Research Chair Funds CAT- 005 from Tecnologico de Monterrey-Campus Monterrey, Nutrigenomics Chair from FEMSA and Consejo Nacional de Ciencia y Tecnología (CONACYT).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet A. Gutiérrez-Uribe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chávez-Santoscoy, R.A., Gutiérrez-Uribe, J.A. & Serna-Saldívar, S.O. Effect of Flavonoids and Saponins Extracted from Black Bean (Phaseolus vulgaris L.) Seed Coats as Cholesterol Micelle Disruptors. Plant Foods Hum Nutr 68, 416–423 (2013). https://doi.org/10.1007/s11130-013-0384-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-013-0384-7

Keywords

  • Optimization
  • Seed coats
  • Flavonoids
  • Saponins
  • Cholesterol absorption