Plant Foods for Human Nutrition

, Volume 68, Issue 4, pp 370–377 | Cite as

Bioactive Compounds and Sensory Quality of Black and White Mulberries Grown in Spain

  • Ángel Calín-Sánchez
  • Juan José Martínez-Nicolás
  • Sandra Munera-Picazo
  • Ángel A. Carbonell-Barrachina
  • Pilar Legua
  • Francisca Hernández
Original Paper


The objective of this study was to evaluate and compare, for the first time, white and black mulberry species in terms of main phytochemical, volatile composition and sensory profile characteristics in eight Spanish clones. The results showed that black and white mulberry species displayed significant different characteristics. PLS analysis has allowed grouping of the clones into four groups (i) MA1, MA2 and MN2, (ii) MN3 and MN4, (iii) MA3 and MA4, and (iv) MN1. Experimental results proved that Spanish mulberries have potential for fresh consumption due to their high antioxidant capacity (10.7–86.1 mg Trolox 100 g−1), polyphenol (76.7–180 mg gallic acid 100 g−1) and ellagic acid content (8.7–15.5 mg 100 g−1) as well as considerable amount of volatile compounds (35) with desirable attributes, which were scored high by a trained panel. Cultivars from the Morus nigra species seem to provide fruits with higher content of bioactive compounds and better aptitude for fresh consumption than Morus alba. Differences among the species should be attributed to genetics because they were cultivated under same conditions.


Morus Ellagic acid Bioactive compounds Volatiles Sensory properties 


Conflict of Interest

The authors declare that they have no conflict of interest


  1. 1.
    MAGRAMA (2011) Ministerio de Agricultura, Alimentación y Medio Ambiente. Anuario de Estadística Agraria Available:
  2. 2.
    Ercisli S, Orhan E (2007) Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem 103:1380–1384CrossRefGoogle Scholar
  3. 3.
    Gundogdu M, Muradoglu F, Gazioglu Sensoy RI, Yilmaz H (2011) Determination of fruit chemical properties of Morus nigra L., Morus alba L. and Morus rubra L. by HPLC. Sci Hortic 132:37–41CrossRefGoogle Scholar
  4. 4.
    Tutin GT (1996) Morus L. In: Tutin GT, Burges NA, Chater AO, Edmondson JR, Heywood VH, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europa, Vol 1. Psilotaceae to Platanaceae, 2nd edn. Cambridge University Press, AustraliaGoogle Scholar
  5. 5.
    Naowaboot J, Pannangpetch P, Kukongviriyapan V, Kongyingyoes B, Kukongviriyapan U (2009) Antihyperglycemic, antioxidant and antiglycation activities of mulberry leaf extract in streptozotocin-induced chronic diabetic rats. Plant Foods Hum Nutr 64:116–121CrossRefGoogle Scholar
  6. 6.
    Pawlowski MA, Oleszek W, Braca A (2008) Quali-quantitative analyses of flavonoids of Morus nigra L. and Morus alba L. (Moraceae) fruits. J Agric Food Chem 56:3377–3380CrossRefGoogle Scholar
  7. 7.
    Özgen M, Serçe S, Kaya C (2009) Phytochemical and antioxidant properties of anthocyanin-rich Morus nigra and Morus rubra fruits. Sci Hortic 119:275–279CrossRefGoogle Scholar
  8. 8.
    Nakamura Y, Watanabe S, Miyake N, Kohno H, Osawa T (2003) Dihydrochalcones: evaluation as novel radical scavenging antioxidants. J Agric Food Chem 51:3309–3312CrossRefGoogle Scholar
  9. 9.
    Lin JY, Tang CY (2007) Determination of total phenolics and flavonoid contents in selected fruits and vegetables, as well as their simulatory effects on mouse splenocyte proliferation. Food Chem 101(1):140–147CrossRefGoogle Scholar
  10. 10.
    Du Q, Zheng J, Xu Y (2008) Composition of anthocyanins in mulberry and their antioxidant activity. J Food Compos Anal 21:390–395CrossRefGoogle Scholar
  11. 11.
    Fazaeli M, Emam-Djomeh Z, Kalbasi-Ashtari A, Omid M (2012) Effects of heating method and conditions on the quality attributes of black mulberry (Morus nigra) juice concentrate. Int J Food Eng 8(1):1–20CrossRefGoogle Scholar
  12. 12.
    Paredes-López O, Cervantes-Ceja ML, Vigna-Pérez M, Hernández-Pérez T (2010) Berries: improving human health and healthy aging, and promoting quality life-A review. Plant Foods Hum Nutr 65:299–308CrossRefGoogle Scholar
  13. 13.
    Gögüs F, Lewis AC, Özel MZ (2011) Analysis of black mulberry volatiles using GCxGC-TOF/MS. Int J Food Prop 14(1):29–36CrossRefGoogle Scholar
  14. 14.
    Zhang L, Wang B, Xu Z (2011) Volatile constituents of four moraceous host plants of Apriona germari. Acta Ecol Sin 31(24):7479–7485 ISSN 1000–0933 CN 11-2031/QGoogle Scholar
  15. 15.
    Elmaci Y, Altug T (2002) Flavour evaluation of three black mulberry (Morus nigra) cultivars using GC/MS, chemical and sensory data. J Sci Food Agric 82:632–635CrossRefGoogle Scholar
  16. 16.
    Visai C, Vanoli M (1997) Volatile compound production during growth and ripening of peaches and nectarines. Sci Hort 70:15–24CrossRefGoogle Scholar
  17. 17.
    Vendramini AL, Trugo LC (2000) Chemical composition of acerola fruit (Malpighia punicifolia L.) at three stages of maturity. Food Chem 71:195–198CrossRefGoogle Scholar
  18. 18.
    Lin J, Rouseff RL, Barros S, Naim M (2002) Aroma composition changes in early season grapefruit juice produced from thermal concentration. J Agric Food Chem 50:813–819CrossRefGoogle Scholar
  19. 19.
    Botondi R, DeSantis D, Bellincontro A, Vizovitis K, Mencarelli F (2003) Influence of ethylene inhibition by 1-methylcyclopropene on apricot quality, volatile production, and glycosidase activity of low- and high-aroma varieties of apricots. J Agric Food Chem 51:1189–1200CrossRefGoogle Scholar
  20. 20.
    Arnao MB, Cano A, Acosta M (2001) The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem 73:239–244. doi: 10.1016/S0308-8146(00)00324-1 CrossRefGoogle Scholar
  21. 21.
    Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178CrossRefGoogle Scholar
  22. 22.
    Calín-Sánchez A, Figiel A, Hernández F, Melgarejo P, Lech K, Carbonell-Barrachina AA (2013) Chemical composition, antioxidant capacity, and sensory quality of pomegranate (Punica granatum L.) arils and rind as affected by drying method. Food Bioprocess Tech 6:1644–1654CrossRefGoogle Scholar
  23. 23.
    Vázquez-Araújo L, Koppel K, Chambers E IV, Adhikari K, Carbonell-Barrachina AA (2011) Instrumental and sensory aroma profile of pomegranate juices from the USA: differences between fresh and commercial juice. Flavour Frag J 26:129–138CrossRefGoogle Scholar
  24. 24.
    Melgarejo P, Calín-Sanchez A, Vázquez-Araújo L, Hernández F, Martínez JJ, Legua P, Carbonell-Barrachina AA (2011) Volatile composition of pomegranates from 9 Spanish cultivars using head space-solid phase microextraction. J Food Sci 76(1):114–120CrossRefGoogle Scholar
  25. 25.
    Carbonell-Barrachina AA, Calín-Sánchez A, Bagatar B, Hernández F, Legua P, Martínez-Font R, Melgarejo P (2012) Potential of Spanish sour–sweet pomegranates (cultivar C25) for juice industry. Food Sci Tech Int 18(2):129–138CrossRefGoogle Scholar
  26. 26.
    NIST (National Institute of Standards and Technology) (2013) Standard reference database, Gaithersburg, USA. Available at: Accessed 01 June 2013
  27. 27.
    Adhikari K, Dooley LM, Chambers E IV, Bhumiratana N (2010) Sensory characteristics of commercial-lactose free milks manufactured in the United States. LWT-Food Sci Tech 43:113–118CrossRefGoogle Scholar
  28. 28.
    Imran M, Hamayun K, Mohibullah S, Rasool K, Faridullah K (2010) Chemical composition and antioxidant activity of certain Morus species. J Zhejiang Univ Sci B 11(12):973–980CrossRefGoogle Scholar
  29. 29.
    Ercisli S, Orhan E (2008) Some physico-chemical characteristics of black mulberry (Morus nigra L.) genotypes from Northeast Anatolia region of Turkey. Sci Hortic 116:41–46CrossRefGoogle Scholar
  30. 30.
    Darias-Martin J, Lobo-Rodrigo G, Hernandez-Cordero J, Diaz-Diaz E, Diaz-Romero C (2003) Alcoholic beverages obtained from black mulberry. Food Technol Biotechnol 41:173–176Google Scholar
  31. 31.
    Bae SH, Suh HJ (2007) Antioxidant activities of five different mulberry cultivars in Korea. LWT-Food Sci Technol 40:955–962CrossRefGoogle Scholar
  32. 32.
    Seeram NP, Adams LS, Henning SM, Niu Y, Zhang Y, Nair MG, y Heber D (2005) In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J Nut Biochem 16:360–367CrossRefGoogle Scholar
  33. 33.
    Alonso A, Vázquez-Araújo L, García-Martínez S, Ruiz JJ, Carbonell-Barrachina ÁA (2009) Volatile compounds of traditional and virus-resistant breeding lines of Muchamiel tomatoes. Eur Food Res Tech 230(2):315–323CrossRefGoogle Scholar
  34. 34.
    Melgarejo P, Calín-Sánchez A, Carbonell-Barrachina AA, Martínez-Nicolás JJ, Legua P, Martínez R, Hernández F (2013) Antioxidant activity, volatile composition and sensory profile of four new very-early apricots (Prunus armeniaca L.). J Sci Food Agric. doi: 10.1002/jsfa.6201 Google Scholar
  35. 35.
    SAFC, from SAFC Supply Solutions. Flavors & Fragrances Catalogue (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ángel Calín-Sánchez
    • 1
  • Juan José Martínez-Nicolás
    • 2
  • Sandra Munera-Picazo
    • 1
  • Ángel A. Carbonell-Barrachina
    • 1
  • Pilar Legua
    • 2
  • Francisca Hernández
    • 2
  1. 1.Departamento de Tecnología Agroalimentaria, Grupo Calidad y Seguridad AlimentariaUniversidad Miguel HernándezOrihuelaSpain
  2. 2.Departamento de Producción Vegetal y Microbiología, Grupo de Fruticultura y Técnicas de ProducciónUniversidad Miguel HernándezOrihuelaSpain

Personalised recommendations