Plant Foods for Human Nutrition

, Volume 68, Issue 3, pp 235–240 | Cite as

Antioxidant and Antihypertensive Activity of Extract from Thymus serpyllum L. in Experimental Hypertension

  • N. Mihailovic-Stanojevic
  • A. Belščak-Cvitanović
  • J. Grujić-Milanović
  • M. Ivanov
  • Dj. Jovović
  • D. Bugarski
  • Z. Miloradović
Original Paper

Abstract

The low incidence of cardiovascular disease in Mediterranean countries leads to an increased interest of the scientific community for the Mediterranean diet. Our aim was to evaluate total phenol and flavonoid contents, antioxidant capacity, free radical scavenging activity and potential antihypertensive effect of aqueous extract obtained from Thymus serpyllum L. (wild thyme, TE), an aromatic herb from the Lamiaceae family (highly present in Mediterranean diet), in spontaneously hypertensive rats (SHR) and in normotensive Wistar rats. Total phenol content of TE was 2008.33 ± 10.6 mg/L GAE, and rosmarinic and caffeic acids were predominant phenolic compounds. The ferric reducing/antioxidant power and antioxidant capacity analysis revealed strong antioxidative properties of TE. In vitro nitric oxide-scavenging activity of 1 mg/l TE was 63.43 % with the IC50 value of 122.36 μg/ml. Bolus injection of TE (100 mg/kg body weight i.v.) induced significant decrease of systolic and diastolic blood pressure and total peripheral resistance in SHR, without effects on these parameters in normotensive Wistar rats. Cardiac index remained unchanged after TE treatment in all experimental rats. Given dose of TE did not show significant nitric oxide-scavenging activity in vivo. Our results indicate that TE may protect against hypertension in experimental model of essential hypertension.

Keywords

Wild thyme Antioxidant Hypertension Mediterranean diet Blood pressure Peripheral resistance Nitric oxide Spontaneously hypertensive rats Rosmarinic acid 

Abbreviations

ABTS

2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) diammonium salt

CI

Cardiac index

BMC

Bone marrow cells

DBP

Diastolic blood pressure

FRAP

Ferric reducing/antioxidant power

GAE

Gallic acid equivalents

iNOS

Inducible nitric oxide synthase

MTT

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NO

Nitric oxide

PDA

Photodiode array detector

SBP

Systolic blood pressure

SHR

Spontaneously hypertensive rat

TE

Extract from a plant Thymus serpyllum L. (wild thyme)

TPVR

Total peripheral vascular resistance

W

Wistar rat

Supplementary material

11130_2013_368_MOESM1_ESM.pdf (35 kb)
ESM 1(PDF 35 kb)
11130_2013_368_MOESM2_ESM.pdf (145 kb)
ESM 2(PDF 144 kb)
11130_2013_368_MOESM3_ESM.pdf (39 kb)
ESM 3(PDF 39 kb)

References

  1. 1.
    World Health Organization (1999) Herba thymi. In: Zhang X (ed) WHO monographs on selected medicinal plants, volume 1. WHO Graphics, Geneva, pp 259–266Google Scholar
  2. 2.
    Cosentino S, Tuberoso CIG, Pisano B, Satta M, Mascia V, Arzedi E, Palmas F (1999) In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett Appl Microbiol 29(2):130–135CrossRefGoogle Scholar
  3. 3.
    Yao LH, Jiang YM, Shi J, Tomas-Barberan FA, Datta N, Singanusong R, Chen SS (2004) Flavonoids in food and their health benefits. Plant Foods Hum Nutr 59(3):113–122CrossRefGoogle Scholar
  4. 4.
    Kulisic T, Krisko A, Dragovic-Uzelac V, Milos M, Pifat G (2007) The effects of essential oils and aqueous tea infusions of oregano (Origanum vulgare L. spp. hirtum), thyme (Thymus vulgaris L.) and wild thyme (Thymus serpyllum L.) on the copper-induced oxidation of human low-density lipoproteins. Int J Food Sci Nutr 58(2):87–93CrossRefGoogle Scholar
  5. 5.
    Doggrell SA, Brown L (1998) Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res 39(1):89–105CrossRefGoogle Scholar
  6. 6.
    de Lorgeril M, Salen P (2008) The Mediterranean diet: rationale and evidence for its benefit. Curr Atheroscler Rep 10(6):518–522CrossRefGoogle Scholar
  7. 7.
    Lynn A, Hamadeh H, Leung WC, Russell JM, Barker ME (2012) Effects of pomegranate juice supplementation on pulse wave velocity and blood pressure in healthy young and middle-aged men and women. Plant Foods Hum Nutr 67(3):309–314CrossRefGoogle Scholar
  8. 8.
    Tsai PJ, Tsai TH, Yu CH, Ho SC (2007) Evaluation of NO-suppressing activity of several Mediterranean culinary spices. Food Chem Toxicol 45(3):440–447CrossRefGoogle Scholar
  9. 9.
    Lachman J, Hosnedl V, Pivec V, Orsak M (1998) Polyphenols in cereals and their positive and negative role in human and animal nutrition. In: Vaculová K, Ehrenbergová J (eds) Proceedings of the conference cereals for human health and preventive nutrition. Agricultural Research Institute Kroměříž, Brno, pp 118–125Google Scholar
  10. 10.
    Horzic D, Komes D, Belscak A, Ganic KK, Ivekovic D, Karlovic D (2009) The composition of polyphenols and methylxanthines in teas and herbal infusions. Food Chem 115(2):441–448CrossRefGoogle Scholar
  11. 11.
    Jagtap UB, Panaskar SN, Bapat VA (2010) Evaluation of antioxidant capacity and phenol content in jackfruit (Artocarpus heterophyllus Lam.) fruit pulp. Plant Foods Hum Nutr 65(2):99–104CrossRefGoogle Scholar
  12. 12.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9–10):1231–1237CrossRefGoogle Scholar
  13. 13.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63CrossRefGoogle Scholar
  14. 14.
    Janicsak G, Mathe I, Miklossy-Vari V, Blunden G (1999) Comparative studies of the rosmarinic and caffeic acid contents of Lamiaceae species. Biochem Syst Ecol 27(7):733–738CrossRefGoogle Scholar
  15. 15.
    Fecka I, Turek S (2008) Determination of polyphenolic compounds in commercial herbal drugs and spices from Lamiaceae: thyme, wild thyme and sweet marjoram by chromatographic techniques. Food Chem 108(3):1039–1053CrossRefGoogle Scholar
  16. 16.
    Ahmadvand H, Khosrobeigi A, Nemati L, Boshtam M, Jafari N, Hosseini RH, Pournia Y (2012) Rosmarinic acid prevents the oxidation of low density lipoprotein (LDL) in vitro. J Biol Sci 12(5):301–307CrossRefGoogle Scholar
  17. 17.
    Lu YR, Foo LY (2001) Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem 75(2):197–202CrossRefGoogle Scholar
  18. 18.
    Katalinic V, Milos M, Kulisic T, Jukic M (2006) Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem 94(4):550–557CrossRefGoogle Scholar
  19. 19.
    Ateeq-ur-Rehman, Mannan A, Inayatullah S, Akhtar MZ, Qayyum M, Mirza B (2009) Biological evaluation of wild thyme (Thymus serpyllum). Pharm Biol 47(7):628–633CrossRefGoogle Scholar
  20. 20.
    Stangl V, Dreger H, Stangl K, Lorenz M (2007) Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc Res 73(2):348–358CrossRefGoogle Scholar
  21. 21.
    Alaghband-Zadeh J, Das I, Hanson MR, MacGregor CAJ, DeWardener HE, Laycock JF (1996) Hypothalamic and plasma total nitrate/nitrite concentrations in spontaneously hypertensive rats. Exp Physiol 81(5):881–883Google Scholar
  22. 22.
    Lee HB, Blaufox MD (1985) Blood volume in the rat. J Nucl Med 26(1):72–76Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • N. Mihailovic-Stanojevic
    • 1
  • A. Belščak-Cvitanović
    • 2
  • J. Grujić-Milanović
    • 1
  • M. Ivanov
    • 1
  • Dj. Jovović
    • 1
  • D. Bugarski
    • 1
  • Z. Miloradović
    • 1
  1. 1.Department of Cardiovascular Physiology, Institute for Medical ResearchUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of Food Technology and BiotechnologyUniversity of ZagrebZagrebCroatia

Personalised recommendations