Skip to main content
Log in

Glucosinolates Profile and Antioxidant Capacity of Romanian Brassica Vegetables Obtained by Organic and Conventional Agricultural Practices

Plant Foods for Human Nutrition Aims and scope Submit manuscript

Cite this article

Abstract

The profile of glucosinolates in relation to the antioxidant capacity of five Brassica vegetables (Broccoli, Cauliflower, Kohlrabi, White and Red Cabbage) grown by organic and conventional agricultural practices in Transylvania region-Romania, were determined and compared. The qualitative and quantitative compositions of glucosinolates were determined by HPLC-PDA technique. The antioxidant capacity was comparatively determined by ABTS, DPPH, FRAP and Folin-Ciocalteu assays. The highest glucosinolates levels were found in the Broccoli samples grown under conventional practices (14.24 μmol/g dry weight), glucoraphanin, glucobrassicin and neo-glucobrassicin being the major components. The total glucosinolates content was similar in Kohlrabi and Cauliflower (4.89 and 4.84 μmol/g dry weight, respectively), the indolyl glucosinolates were predominant in Kohlrabi, while the aliphatic derivatives (sinigrin and glucoiberin) were major in Cauliflower. In Cabbage samples, the aliphatic glucosinolates were predominat against indolyl derivatives, glucoraphanin and glucoiberin being the main ones in Red Cabbage. The principal component analysis was applied to discriminate among conventional and organic samples and demonstrated non-overlaps between these two agricultural practices. Meanwhile it was shown that glucosinolates may represent appropriate molecular markers of Brassica vegetables, their antioxidant capacity being higher in organic crops, without significant differences among different Brassica varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Abbreviations

4OHGBS:

4-hydroxyglucobrassicin

4OMGBS:

4-methoxyglucobrassicin

ABTS .+ :

Azinobis (3-ethylbenzthiazoline-6-sulfonic acid)

Conv :

Conventional

DPPH:

Diphenyl picrylhydrazyl

dw:

Dry weight

FRAP:

Ferric reducing antioxidant power

GAE:

Gallic acid equivalent

GBS:

Glucobrassicin

GIB:

Glucoiberin

GLS:

Glucosinolates

GNA:

Gluconapin

GRA:

Glucoraphanin

HPLC:

High-performance liquid chromatography

NGBS:

Neoglucobrassicin

Org :

Organic

PCA:

Principal component analysis

PRO:

Progoitrin

SIN:

Sinigrin

TE:

Trolox equivalent

TPTZ:

2.4.6-Tri (2-pyridyl)-s-triazine

References

  1. Mewis I, Appel HM, Hom A, Raina R, Schultz JC (2005) Major signaling pathways modulate Arabidopsis thaliana (L.) glucosinolate accumulation and response to both phloem feeding and chewing insects. Plant Physiol 138:1149–1162

    Article  CAS  Google Scholar 

  2. Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  Google Scholar 

  3. Mewis I, Tokuhisa JG, Schultz JC, Appel HM, Ulrichs C, Gershenzon J (2006) Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry 67:2450–2462

    Article  CAS  Google Scholar 

  4. Rohr F, Ulrichs C, Schreiner M, Nguyen CN, Mewis I (2011) Impact of hydroxylated and non-hydroxylated aliphatic glucosinolates in Arabidopsis thaliana crosses on plant resistance against a generalist and a specialist herbivore. Chemoecology 21:171–180

    Article  CAS  Google Scholar 

  5. Cohen JH, Kristal AR, Stanford JL (2000) Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst 92:61–68

    Article  CAS  Google Scholar 

  6. Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P (2001) Chemoprotective glucosinolates and isothiocyanates of broccolisprouts: metabolism and excretion in humans. Cancer Epidemiol Biomarkers Prev 10:501–508

    CAS  Google Scholar 

  7. Wagner AE, Ernst I, Iori R, Desel C, Rimbach G (2010) Sulforaphane but not ascorbigen, indolyl-3-carbinole and ascorbic acid activates the transcription factor Nrf2 and induces phase-2 and antioxidant enzymes in human keratinocytes in culture. Exp Dermatol 19(2):137–144

    Article  CAS  Google Scholar 

  8. Abdull Razis AF, Bagatta M, De Nicola GR, Iori R, Ioannides C (2010) Intact glucosinolates modulate hepatic cytochrome P450 and phase II conjugation activities and may contribute directly to the chemopreventive activity of cruciferous vegetables. Toxicology 277(1–3):74–85

    Article  CAS  Google Scholar 

  9. Abdull Razis AF, Iori R, Ioannides C (2011) The natural chemopreventive phytochemical R-sulforaphane is a far more potent inducer of the carcinogen-detoxifying enzyme systems in rat liver and lung than the S-isomer. Int J Cancer 128(12):2775–2782

    Article  CAS  Google Scholar 

  10. Zanichelli F, Capasso S, Cipollaro M, Pagnotta E, Carteni M, Casale F, Iori R, Galderisi U (2011) Dose-dependent effects of R-sulforaphane isothiocyanate on the biology of human mesenchymal stem cells, at dietary amounts, it promotes cell proliferation and reduces senescence and apoptosis, while at anti-cancer drug doses, it has a cytotoxic effect. Age (Dodr) 34(2):281–293

    Google Scholar 

  11. Llorach R, Gil-Izquierdo A, Ferreres F, Tomas-Barberan FA (2003) HPLC-DAD-MS/MS ESI characterization of unusual highly glycosylated acylated flavonoids from cauliflower (Brassica oleracea L. var. botrytis) agroindustrial byproducts. J Agric Food Chem 51:3895–3899

    Article  CAS  Google Scholar 

  12. Vallejo F, Tomas-Barberan FA, Ferreres F (2004) Characterisation of flavonols in broccoli (Brassica oleracea L. var. italica) by liquid chromatography-UV diode-array detection-electrospray ionisation mass spectrometry. J Chromatogr A 1054:181–193

    Google Scholar 

  13. Velasco P, Francisco M, Moreno DA, Ferreres F, García-Viguera C, Cartea ME (2011) Phytochemical fingerprinting of vegetable Brassica oleracea and Brassica napus by simultaneous identification of glucosinolates and phenolics. Phytochem Anal 22(2):144–145

    Article  CAS  Google Scholar 

  14. Brandt K, Molgaard JPM (2001) Organic agriculture: does it enhance or reduce the nutritional value of food plants. J Sci Food Agric 81:924–931

    Article  CAS  Google Scholar 

  15. Meyer M, Adam S (2008) Comparison of glucosinolate levels in commercial broccoli and Red Cabbage from conventional and ecological farming. Eur Food Res Technol 226:1429–1437

    Article  CAS  Google Scholar 

  16. Park YS, Im HM, Ham K-S, Kang SG, Park Y-P, Namiesnik J, Leontowicz H, Leontowicz M, Katrich E, Gorinstein S (2013) Nutritional and pharmaceutical properties of bioactive compounds in organic and conventional growing kiwifruit. Plant Foods Hum Nutr 68(1):57–64

    Google Scholar 

  17. Picchi V, Migliori C, Lo Scalzo R, Campanelli G, Ferrari V, Di Cesare LF (2012) Phytochemical content in organic and conventionally grown Italian cauliflower. Food Chem 130:501–509

    Article  CAS  Google Scholar 

  18. Cartea ME, de Haro A, Obregón S, Soengas P, Velasco P (2012) Glucosinolate variation in leaves of Brassica rapa crops. Plant Foods Hum Nutr 67:283–288

    Article  CAS  Google Scholar 

  19. De Pascale S, Maggio A, Pernice R, Fogliano V, Barbieri G (2007) Sulphur fertilization may improve the nutritional value of Brassica rapa L. subsp sylvestris. Europ J Agronomy 26:418–424

  20. Li J, Zhu Z, Gerendas J (2008) Effects of nitrogen and sulfur on total phenolics and antioxidant activity in two genotypes of leaf mustard. J Plant Nutr 31:1642–1655

    Article  CAS  Google Scholar 

  21. Cartea ME, Francisco M, Soengas P, Velasco P (2011) Phenolic compounds in Brassica vegetables. Molecules 16:251–280

    Article  CAS  Google Scholar 

  22. Sousa C, Valentao P, Rangel J, Lopes G, Pereira JA, Ferreres F, Seabra RA, Andrade PB (2005) Influence of two fertilization regimens on the amounts of organic acids and phenolic compounds of tronchuda cabbage (Brassica oleracea L. var. costata DC). J Agric Food Chem 53:9128–9132

    Article  CAS  Google Scholar 

  23. Young JE, Zhao X, Carey EE, Welti R, Yang SS, Wang WQ (2005) Phytochemical phenolics in organically grown vegetables. Mol Nutr Food Res 49:1136–1142

    Article  CAS  Google Scholar 

  24. Zhao X, Nechols JR, Williams KA, Wang WQ, Carey EE (2009) Comparison of phenolic acids in organically and conventionally grown pak choi (Brassica rapa L. chinensis). J Sci Food Agric 89:940–946

    Article  CAS  Google Scholar 

  25. Arnao MB, Cano A, Alcolea JF, Acosta M (2001) Estimation of free radical quenching activity of leaf pigment extracts. Phytochem Anal 12:138–143

    Article  CAS  Google Scholar 

  26. Beevi SS, Narasu ML, Gowda BB (2010) Polyphenolics profile, antioxidant and radical scavenging activity of leaves and stem of Raphanus sativus L. Plant Foods Hum Nutr 65:8–17

    Article  CAS  Google Scholar 

  27. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  28. Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178

    Google Scholar 

  29. Robbins R, Keck AS, Banuelos G, Finley JW (2005) Cultivation conditions and selenium fertilization alter the phenolic profile, glucosinolate and sulforaphane content of broccoli. J Med Food 8(2):204–214

    Article  CAS  Google Scholar 

  30. Barbieri G, Pernice R, Maggio A, De Pascale S, Fogliano V (2008) Glucosinolates profile of Brassica rapa L. subsp. Sylvestris L. Janch. var. esculenta Hort. Food Chem 107:1687–1691

  31. Tian Q, Rosselot RA, Schwartz SJ (2005) Quantitative determination of intact glucosinolates in broccoli, broccoli sprouts, Brussels sprouts, and cauliflower by high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry. Anal Biochem 343:93–99

    Article  CAS  Google Scholar 

  32. McNaughton SA, Marks GC (2003) Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. Brit J Nutr 90:687–697

    Google Scholar 

  33. Kusznierewicz B, Bartoszek A, Wolska L, Drzewiecki J, Gorinstein S, Namieśnik J (2008) Partial characterization of White Cabbages (Brassica oleracea var. capitata f. alba) from different regions by glucosinolates, bioactive compounds, total antioxidant activities and proteins. Food Sci Technol-LWT 41:1–9

    Google Scholar 

  34. Cabello-Hurtado F, Gicquel M, Esnault MA (2012) Evaluation of the antioxidant potential of cauliflower (Brassica oleracea) from a glucosinolate content perspective. Food Chem 132:1003–1009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The desulfo-GLS were kindly provided from Dr. Renato Iori, Director of Research Industrial Crop Research Centre Agricultural Research Council, Italy. The work was financially supported by the European Social Fund—The Operational Sectorial Program for Human Resource Development 2007–2013, project “Cellular and molecular biotechnologies for medical applications” FSE POSDRU/89/1.5/S/60746.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Socaciu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vicas, S.I., Teusdea, A.C., Carbunar, M. et al. Glucosinolates Profile and Antioxidant Capacity of Romanian Brassica Vegetables Obtained by Organic and Conventional Agricultural Practices. Plant Foods Hum Nutr 68, 313–321 (2013). https://doi.org/10.1007/s11130-013-0367-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-013-0367-8

Keywords

Navigation