Abstract
Effects of different solvents, ionic strength, and pH on Inca peanut seed protein solubility were assessed by quantitatively analyzing solubilized proteins using Lowry and Bradford methods. Soluble proteins were fractionated using Osborne procedure and the polypeptide composition of solubilized proteins was determined by one dimensional 25 % monomer acrylamide linear gradient SDS-PAGE. Osborne protein fractions were analyzed by the 2D gel electrophoresis. Total seed proteins were efficiently solubilized by 2 M NaCl among the tested solvents. The soluble seed proteins registered a minimum solubility at pH ~4.0. Osborne protein fractions, albumins, globulins, prolamins, and glutelins accounted for 43.7, 27.3, 3.0, and 31.9 %, respectively, of the total aqueous soluble proteins. Soluble seed flour proteins are mainly composed of polypeptides in the MW range of 6–70 kDa of which the predominant polypeptides were in the 20–40 kDa range. Prolamin fraction was mainly composed of four polypeptides (MW < 15 kDa). Glycoprotein staining indicated 32–35 and <14 kDa peptides to be positive.
This is a preview of subscription content, access via your institution.








Abbreviations
- β-ME:
-
β-mercaptoethanol
- CBBR:
-
Coomassie brilliant blue R
- CHAPS:
-
3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate
- DTT:
-
Dithiothreitol
- EtOH:
-
Ethanol
- IEF:
-
Isoelectric focusing
- kDa:
-
Kilodalton
- LSD:
-
Least significant difference
- MeOH:
-
Methanol
- MW:
-
Molecular weight
- PAGE:
-
Polyacrylamide gel electrophoresis
- pI:
-
Isoelectric pH
- RT:
-
Room temperature
- SDS:
-
Sodium dodecyl sulfate
- Tris:
-
2-Amino-2-hydroxymethyl-propane-1,3-diol
References
FAO Statistical Yearbook (2010) Food and Agricultural Organization, FAOSTAT, Table D.2. Accessed January 14, 2012
Derbyshire E, Wright DJ, Boulter D (1976) Review: Legumin and vicilin, storage proteins of legume seeds. Phytochem 15:3–24
Duranti M, Gius C (1997) Legume seeds: Protein content and nutritional value. Field Crops Res 53:31–45
Deshpande SS (1992) Food legumes in human nutrition- a personal perspective. CRC Crit Rev Food Sci Nutr 32:333–363
Sathe SK (2002) Dry bean protein functionality. CRC Crit Rev Biotechnol 22:175–223
Sathe SK, Deshpande SS, Salunkhe DK (1984) Dry beans of phaseolus: a review. Part I. Proteins. CRC Crit Rev Food Sci Nutr 20:1–46
Sathe SK, Deshpande SS, Salunkhe DK (1984) Dry beans of Phaseolus: A review. Part II. Chemical composition. CRC Crit Rev Food Sci Nutr 21:41–93
Ekanayake S, Jansz ER, Nair BM (2000) Literature review of an underutilized legume: canavalia gladiata L. Plant Foods Hum Nutr 55:305–321
Schwenke KD (2001) Reflections about the functional potential of legume proteins. A review. Nahrung 45:377–381
Pugalenthi M, Vadivel V, Siddhuraju P (2005) Alternative food/feed perspectives of an underutilized legume Mucuna pruriens var. Utilis- A review. Plant Foods Hum Nutr 60:201–218
Phillips RD, McWatters KH, Chinnan MS, Hung Y-C, Beuchat LR, Sakyi-Dawson E, Ngoddy P, Nnanyelugo D, Enwere J, Komey NS, Liu K, Mensa-Wilmot Y, Nnanna IA, Okeke C, Prinyawiwatkul W, Saalia FK (2003) Utilization of cowpeas for human food. Field Crops Res 82:193–213
Montoya CA, Lallès J-P, Beebe S, Leterme P (2010) A review: phaseolin diversity as a possible strategy to improve the nutritional value of common beans (Phaseolin vulgaris). Food Res Int 43:443–449
Sprent JI, Odee DW, Dakora FD (2010) African legumes: A vital but under-utilized resource. J Exp Bot 61:1257–1265
National Academy of Sciences (NAS) (1979) Tropical legumes: sources for the future. Washington, D. C., pp. 332
Bussmann RW, Téllez C, Glenn A (2009) Plukenetia huayllabambana sp. Nov. (Euphorbiaceae) from the upper Amazon of Peru. Nord J Bot 27:313–315
Gillespie LJ (2007) A revision of paleotropical Plukenetia (Euphorbiaceae) including two new species from Madagascar. Syst Bot 32:780–802
Martínez-Romero MM, Castro-Ramírez AE, Fernández JC (2004) Use and availability of craft vines in the influence zone of the biosphere reserve Sian Ka’an, Quintana Roo. Mex Econ Bot 58:83–97
Guillèn MD, Ruiz A, Cabo N, Chirinos R, Pascual G (2003) Characterization of Sacha inchi (Plukenetia volubilis L.) oil by FTIR spectroscopy and 1H NMR. Comparison with linseed oil. J Am Oil Chem Soc 80:755–762
Hamaker BR, Valles C, Gilman R, Hardmeier RM, Clark D, Garcia HH, Gonzales AE, Kohlstad I, Castro M, Valdivia R, Rodriguez T, Lescano M (1992) Amino acid and fatty acid profiles of the Inca peanut (Plukenetia volubilis). Cereal Chem 69:461–463
do Prado IM, Guifrida WM, Alvarez VH, Cabral VF, Quispe-Condori S, Saldaña MDA, Cardozo-Filho L (2011) Phase equilibrium measurements of Sacha inchi oil (Plukenetia volubilis) and CO2 at high pressures. J Am Oil Chem Soc 88:1263–1269
Sathe SK, Hamaker BR, Sze-Tao KWC, Venkatachalam M (2002) Isolation, purification, and biochemical characterization of a novel water soluble protein from Inca peanut (Plukenetia volubilis L.). J Agric Food Chem 50:4906–4908
Friedman M (1996) Nutritional value of proteins from different food sources. A review. J Agric Food Chem 44:6–29
Sathe SK, Venkatachalam M, Sharma GM, Kshirsagar HH, Teuber SS, Roux KH (2009) Solubilization and electrophoretic characterization of select edible nut seed proteins. J Agric Food Chem 57:7846–7856
Osborne TB (1924) The vegetable proteins, 2nd edn. Longmans, Green and Co., London, p 154
Fling SP, Gregerson DS (1986) Peptide and protein molecular weight determination by electrophoresis using a high-molarity tris buffer system without urea. Anal Biochem 155:83–88
Sharma GM, Irsigler A, Dhanarajan P, Ayuso R, Bardina L, Sampson HA, Roux KH, Sathe SK (2011) Cloning and characterization of 2S albumin, Car i 1, a major allergen in pecan. J Agric Food Chem 59:4130–4139
Official Methods of Analysis 16th ed (1995) Association of Official Analytical Chemists (AOAC): Arlington, VA
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254
Deshpande SS, Cheryan M, Salunkhe DK (1986) Tannin analysis of food products. CRC Crit Rev Food Sci Nutr 24:401–449
Ott L (1977) An introductuion to statistical methods and data analysis. Duxbury Press (a division of Wadsworth Publishing Co.), Belmont
Crowe TW, Johnson LA, Wang T (2001) Characterization of extruded-expelled soybean flours. J Am Oil Chem Soc 78:775–779
Adsule RN, Kadam SS, Salunkhe DK (1989) Peanut. In: Salunkhe DK, Kadam SS (eds) Handbook of world food legumes: nutritional chemistry, processing technology, and utilization, Vol. II, pp. 193–214
Tokusoglu O, Unal MK, Alakir I (2004) Proximate chemical composition, amino acid and fatty acid properties of sesame seed flours. J Food Sci Technol (Mysore, India) 41:409–412
Güèmes-Vera N, Peña-Bautista RJ, Jiménez-Martínez C, Dávila-Ortiz G, Calderón Dominguez G (2008) Effective detoxification and decoloration of Lupinus mutabilis seed derivatives, and effect of thoese derivatives on bread quality and acceptance. J Sci Food Agric 88:1135–1143
Kadam SS, Chougule BA, Salunkhe DK (1989) Lupine. In Handbook of World Food Legumes: Nutritional Chemistry, Processing Technology, and Utilization, Salunkhe DK and Kadam SS (eds.), Vol. II, 163–175
Cabra V, Arreguin R, Vazques-Duhalt R, Farres A (2007) Effect of alkaline deamidation on the structure, surface hydrophobicity, and emulsifying properties of the Z19 α-zein. J Agric Food Chem 55:435–445
Zhao J, Tian Z, Chen L (2011) Effects of deamidation on aggregation and emulsifying properties of barley glutelin. Food Chem 128:1029–1036
Sathe SK, Salunkhe DK (1981) Solubilization and electrophoretic characterization of the Great Northern bean (Phaseolus vulgaris L.) proteins. J Food Sci 46:82–87
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sathe, S.K., Kshirsagar, H.H. & Sharma, G.M. Solubilization, Fractionation, and Electrophoretic Characterization of Inca Peanut (Plukenetia volubilis L.) Proteins. Plant Foods Hum Nutr 67, 247–255 (2012). https://doi.org/10.1007/s11130-012-0301-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11130-012-0301-5