Skip to main content

Solubilization, Fractionation, and Electrophoretic Characterization of Inca Peanut (Plukenetia volubilis L.) Proteins

Abstract

Effects of different solvents, ionic strength, and pH on Inca peanut seed protein solubility were assessed by quantitatively analyzing solubilized proteins using Lowry and Bradford methods. Soluble proteins were fractionated using Osborne procedure and the polypeptide composition of solubilized proteins was determined by one dimensional 25 % monomer acrylamide linear gradient SDS-PAGE. Osborne protein fractions were analyzed by the 2D gel electrophoresis. Total seed proteins were efficiently solubilized by 2 M NaCl among the tested solvents. The soluble seed proteins registered a minimum solubility at pH ~4.0. Osborne protein fractions, albumins, globulins, prolamins, and glutelins accounted for 43.7, 27.3, 3.0, and 31.9 %, respectively, of the total aqueous soluble proteins. Soluble seed flour proteins are mainly composed of polypeptides in the MW range of 6–70 kDa of which the predominant polypeptides were in the 20–40 kDa range. Prolamin fraction was mainly composed of four polypeptides (MW < 15 kDa). Glycoprotein staining indicated 32–35 and <14 kDa peptides to be positive.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

β-ME:

β-mercaptoethanol

CBBR:

Coomassie brilliant blue R

CHAPS:

3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate

DTT:

Dithiothreitol

EtOH:

Ethanol

IEF:

Isoelectric focusing

kDa:

Kilodalton

LSD:

Least significant difference

MeOH:

Methanol

MW:

Molecular weight

PAGE:

Polyacrylamide gel electrophoresis

pI:

Isoelectric pH

RT:

Room temperature

SDS:

Sodium dodecyl sulfate

Tris:

2-Amino-2-hydroxymethyl-propane-1,3-diol

References

  1. FAO Statistical Yearbook (2010) Food and Agricultural Organization, FAOSTAT, Table D.2. Accessed January 14, 2012

  2. Derbyshire E, Wright DJ, Boulter D (1976) Review: Legumin and vicilin, storage proteins of legume seeds. Phytochem 15:3–24

    Article  CAS  Google Scholar 

  3. Duranti M, Gius C (1997) Legume seeds: Protein content and nutritional value. Field Crops Res 53:31–45

    Article  Google Scholar 

  4. Deshpande SS (1992) Food legumes in human nutrition- a personal perspective. CRC Crit Rev Food Sci Nutr 32:333–363

    Article  CAS  Google Scholar 

  5. Sathe SK (2002) Dry bean protein functionality. CRC Crit Rev Biotechnol 22:175–223

    Article  CAS  Google Scholar 

  6. Sathe SK, Deshpande SS, Salunkhe DK (1984) Dry beans of phaseolus: a review. Part I. Proteins. CRC Crit Rev Food Sci Nutr 20:1–46

    CAS  Google Scholar 

  7. Sathe SK, Deshpande SS, Salunkhe DK (1984) Dry beans of Phaseolus: A review. Part II. Chemical composition. CRC Crit Rev Food Sci Nutr 21:41–93

    CAS  Google Scholar 

  8. Ekanayake S, Jansz ER, Nair BM (2000) Literature review of an underutilized legume: canavalia gladiata L. Plant Foods Hum Nutr 55:305–321

    Article  CAS  Google Scholar 

  9. Schwenke KD (2001) Reflections about the functional potential of legume proteins. A review. Nahrung 45:377–381

    Article  CAS  Google Scholar 

  10. Pugalenthi M, Vadivel V, Siddhuraju P (2005) Alternative food/feed perspectives of an underutilized legume Mucuna pruriens var. Utilis- A review. Plant Foods Hum Nutr 60:201–218

    Article  CAS  Google Scholar 

  11. Phillips RD, McWatters KH, Chinnan MS, Hung Y-C, Beuchat LR, Sakyi-Dawson E, Ngoddy P, Nnanyelugo D, Enwere J, Komey NS, Liu K, Mensa-Wilmot Y, Nnanna IA, Okeke C, Prinyawiwatkul W, Saalia FK (2003) Utilization of cowpeas for human food. Field Crops Res 82:193–213

    Article  Google Scholar 

  12. Montoya CA, Lallès J-P, Beebe S, Leterme P (2010) A review: phaseolin diversity as a possible strategy to improve the nutritional value of common beans (Phaseolin vulgaris). Food Res Int 43:443–449

    Article  CAS  Google Scholar 

  13. Sprent JI, Odee DW, Dakora FD (2010) African legumes: A vital but under-utilized resource. J Exp Bot 61:1257–1265

    Article  CAS  Google Scholar 

  14. National Academy of Sciences (NAS) (1979) Tropical legumes: sources for the future. Washington, D. C., pp. 332

  15. Bussmann RW, Téllez C, Glenn A (2009) Plukenetia huayllabambana sp. Nov. (Euphorbiaceae) from the upper Amazon of Peru. Nord J Bot 27:313–315

    Article  Google Scholar 

  16. Gillespie LJ (2007) A revision of paleotropical Plukenetia (Euphorbiaceae) including two new species from Madagascar. Syst Bot 32:780–802

    Article  Google Scholar 

  17. Martínez-Romero MM, Castro-Ramírez AE, Fernández JC (2004) Use and availability of craft vines in the influence zone of the biosphere reserve Sian Ka’an, Quintana Roo. Mex Econ Bot 58:83–97

    Article  Google Scholar 

  18. Guillèn MD, Ruiz A, Cabo N, Chirinos R, Pascual G (2003) Characterization of Sacha inchi (Plukenetia volubilis L.) oil by FTIR spectroscopy and 1H NMR. Comparison with linseed oil. J Am Oil Chem Soc 80:755–762

    Article  Google Scholar 

  19. Hamaker BR, Valles C, Gilman R, Hardmeier RM, Clark D, Garcia HH, Gonzales AE, Kohlstad I, Castro M, Valdivia R, Rodriguez T, Lescano M (1992) Amino acid and fatty acid profiles of the Inca peanut (Plukenetia volubilis). Cereal Chem 69:461–463

    CAS  Google Scholar 

  20. do Prado IM, Guifrida WM, Alvarez VH, Cabral VF, Quispe-Condori S, Saldaña MDA, Cardozo-Filho L (2011) Phase equilibrium measurements of Sacha inchi oil (Plukenetia volubilis) and CO2 at high pressures. J Am Oil Chem Soc 88:1263–1269

    Article  CAS  Google Scholar 

  21. Sathe SK, Hamaker BR, Sze-Tao KWC, Venkatachalam M (2002) Isolation, purification, and biochemical characterization of a novel water soluble protein from Inca peanut (Plukenetia volubilis L.). J Agric Food Chem 50:4906–4908

    Article  CAS  Google Scholar 

  22. Friedman M (1996) Nutritional value of proteins from different food sources. A review. J Agric Food Chem 44:6–29

    Article  CAS  Google Scholar 

  23. Sathe SK, Venkatachalam M, Sharma GM, Kshirsagar HH, Teuber SS, Roux KH (2009) Solubilization and electrophoretic characterization of select edible nut seed proteins. J Agric Food Chem 57:7846–7856

    Article  CAS  Google Scholar 

  24. Osborne TB (1924) The vegetable proteins, 2nd edn. Longmans, Green and Co., London, p 154

    Google Scholar 

  25. Fling SP, Gregerson DS (1986) Peptide and protein molecular weight determination by electrophoresis using a high-molarity tris buffer system without urea. Anal Biochem 155:83–88

    Article  CAS  Google Scholar 

  26. Sharma GM, Irsigler A, Dhanarajan P, Ayuso R, Bardina L, Sampson HA, Roux KH, Sathe SK (2011) Cloning and characterization of 2S albumin, Car i 1, a major allergen in pecan. J Agric Food Chem 59:4130–4139

    Article  CAS  Google Scholar 

  27. Official Methods of Analysis 16th ed (1995) Association of Official Analytical Chemists (AOAC): Arlington, VA

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  30. Deshpande SS, Cheryan M, Salunkhe DK (1986) Tannin analysis of food products. CRC Crit Rev Food Sci Nutr 24:401–449

    CAS  Google Scholar 

  31. Ott L (1977) An introductuion to statistical methods and data analysis. Duxbury Press (a division of Wadsworth Publishing Co.), Belmont

    Google Scholar 

  32. Crowe TW, Johnson LA, Wang T (2001) Characterization of extruded-expelled soybean flours. J Am Oil Chem Soc 78:775–779

    Article  CAS  Google Scholar 

  33. Adsule RN, Kadam SS, Salunkhe DK (1989) Peanut. In: Salunkhe DK, Kadam SS (eds) Handbook of world food legumes: nutritional chemistry, processing technology, and utilization, Vol. II, pp. 193–214

  34. Tokusoglu O, Unal MK, Alakir I (2004) Proximate chemical composition, amino acid and fatty acid properties of sesame seed flours. J Food Sci Technol (Mysore, India) 41:409–412

    CAS  Google Scholar 

  35. Güèmes-Vera N, Peña-Bautista RJ, Jiménez-Martínez C, Dávila-Ortiz G, Calderón Dominguez G (2008) Effective detoxification and decoloration of Lupinus mutabilis seed derivatives, and effect of thoese derivatives on bread quality and acceptance. J Sci Food Agric 88:1135–1143

    Article  Google Scholar 

  36. Kadam SS, Chougule BA, Salunkhe DK (1989) Lupine. In Handbook of World Food Legumes: Nutritional Chemistry, Processing Technology, and Utilization, Salunkhe DK and Kadam SS (eds.), Vol. II, 163–175

  37. Cabra V, Arreguin R, Vazques-Duhalt R, Farres A (2007) Effect of alkaline deamidation on the structure, surface hydrophobicity, and emulsifying properties of the Z19 α-zein. J Agric Food Chem 55:435–445

    Article  Google Scholar 

  38. Zhao J, Tian Z, Chen L (2011) Effects of deamidation on aggregation and emulsifying properties of barley glutelin. Food Chem 128:1029–1036

    Article  CAS  Google Scholar 

  39. Sathe SK, Salunkhe DK (1981) Solubilization and electrophoretic characterization of the Great Northern bean (Phaseolus vulgaris L.) proteins. J Food Sci 46:82–87

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shridhar K. Sathe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sathe, S.K., Kshirsagar, H.H. & Sharma, G.M. Solubilization, Fractionation, and Electrophoretic Characterization of Inca Peanut (Plukenetia volubilis L.) Proteins. Plant Foods Hum Nutr 67, 247–255 (2012). https://doi.org/10.1007/s11130-012-0301-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-012-0301-5

Keywords