Skip to main content

Advertisement

Log in

In vitro Utilization of Gold and Green Kiwifruit Oligosaccharides by Human Gut Microbial Populations

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

We examined the effects of whole kiwifruit on gut microbiota using an in vitro batch model of gastric-ileal digestion and colonic fermentation. Faecal fermentations of gold and green kiwifruit, inulin and water (control) digests were performed for up to 48 h. As compared to the control, gold and green kiwifruit increased Bifidobacterium spp. by 0.9 and 0.8 log10 cfu/ml, respectively (P < 0.001), and the Bacteroides-Prevotella-Porphyromonas group by 0.4 and 0.5 log10 cfu/ml, respectively. Inulin only had a bifidogenic effect (+0.4 log10 cfu/ml). This was accompanied with increases in microbial glycosidases, especially those with substrate specificities relating to the breakdown of kiwifruit oligosaccharides, and with increased generation of short chain fatty acids. The microbial metabolic activity was sustained for up to 48 h, which we attribute to the complexity of the carbohydrate substrate provided by whole kiwifruit. Kiwifruit fermenta supernatant was also separately shown to affect the in vitro proliferation of Bifidobacterium longum, and its adhesion to Caco-2 intestinal epithelial cells. Collectively, these data suggest that whole kiwifruit may modulate human gut microbial composition and metabolism to produce metabolites conducive to increased bifidobacteria-host association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

CFBM:

Carbohydrate free basal medium

SCFA:

Short chain fatty acid

References

  1. Resta SC (2009) Effects of probiotics and commensals on intestinal epithelial physiology: Implications for nutrient handling. J Physiol (Lond) 587(17):4169–4174

    Article  CAS  Google Scholar 

  2. Russell DA, Ross RP, Fitzgerald GF, Stanton C (2011) Metabolic activities and probiotic potential of bifidobacteria. Int J Food Microbiol 149(1):88–105

    Article  CAS  Google Scholar 

  3. Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, Hardt PD (2009) Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18(1):190–195

    Article  Google Scholar 

  4. Rendón-Huerta J, Juárez-Flores B, Pinos-Rodríguez J, Aguirre-Rivera J, Delgado-Portales R (2012) Effects of different sources of fructans on body weight, blood metabolites and fecal bacteria in normal and obese non-diabetic and diabetic rats. Plant Foods Hum Nutr 67(1):64–70

    Article  Google Scholar 

  5. Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62(1):67–72

    Article  CAS  Google Scholar 

  6. Rush EC, Patel M, Plank LD, Ferguson LR (2002) Kiwifruit promotes laxation in the elderly. Asia Pac J Clin Nutr 11(2):164–168

    Article  Google Scholar 

  7. Han KS, Balan P, Gasa FM, Boland M (2011) Green kiwifruit modulates the colonic microbiota in growing pigs. Lett Appl Microbiol 52(4):379–385

    Article  CAS  Google Scholar 

  8. Dawson DM, Melton LD (1991) Two pectic polysaccharides from kiwifruit cell walls. Carbohydr Polym 15(1):1–11

    Article  CAS  Google Scholar 

  9. Parkar SG, Redgate EL, Wibisono R, Luo X, Koh ETH, Schröder R (2010) Gut health benefits of kiwifruit pectins: Comparison with commercial functional polysaccharides. J Funct Foods 2(3):210–218

    Article  CAS  Google Scholar 

  10. Menezes E, Dan M, Cardenette G, Goñi I, Bello-Pérez L, Lajolo F (2010) In vitro colonic fermentation and glycemic response of different kinds of unripe banana flour. Plant Food Hum Nutr 65(4):379–385

    Article  CAS  Google Scholar 

  11. Monro JA, Wallace A, Mishra S, Eady S, Willis JA, Scott RS, Hedderley D (2010) Relative glycaemic impact of customarily consumed portions of eighty-three foods measured by digesting in vitro and adjusting for food mass and apparent glucose disposal. Br J Nutr 104(3):407–417

    Article  CAS  Google Scholar 

  12. Englyst HN, Hudson GJ (1987) Colorimetric method for routine analysis of dietary fibre as non-starch polysaccharides. A comparison with gas–liquid chromatography. Food Chem 24:63–76

    Article  CAS  Google Scholar 

  13. Hughes SA, Shewry PR, Gibson GR, McCleary BV, Rastall RA (2008) In vitro fermentation of oat and barley derived beta-glucans by human faecal microbiota. FEMS Microbiol Ecol 64(3):482–493

    Article  CAS  Google Scholar 

  14. Schiller C, Frohlich CP, Giessmann T, Siegmund W, Monnikes H, Hosten N, Weitschies W (2005) Intestinal fluid volumes and transit of dosage forms as assessed by magnetic resonance imaging. Aliment Pharmacol Ther 22(10):971–979

    Article  CAS  Google Scholar 

  15. Paturi G, Butts C, Monro J, Nones K, Martell S, Butler R, Sutherland J (2010) Cecal and colonic responses in rats fed 5 or 30% corn oil diets containing either 7.5 % broccoli dietary fiber or microcrystalline cellulose. J Agric Food Chem 58(10):6510–6515

    Article  CAS  Google Scholar 

  16. Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148(1):257–266

    CAS  Google Scholar 

  17. Huijsdens XW, Linskens RK, Mak M, Meuwissen SGM, Vandenbroucke-Grauls CMJE, Savelkoul PHM (2002) Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR. J Clin Microbiol 40(12):4423–4427

    Article  CAS  Google Scholar 

  18. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota - introducing the concept of prebiotics. J Nutr 125(6):1401–1412

    CAS  Google Scholar 

  19. Jensen MT, Cox RP, Jensen BB (1995) Microbial-production of skatole in the hind gut of pigs given different diets and its relation to skatole deposition in backfat. Anim Sci 61:293–304

    Article  CAS  Google Scholar 

  20. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC, Hooper LV, Gordon JI (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299(5615):2074–2076

    Article  CAS  Google Scholar 

  21. Louis P, Scott KP, Duncan SH, Flint HJ (2007) Understanding the effects of diet on bacterial metabolism in the large intestine. J Appl Microbiol 102(5):1197–1208

    Article  CAS  Google Scholar 

  22. Marzorati M, Van den Abbeele P, Possemiers S, Benner J, Verstraete W, Van de Wiele T (2011) Studying the host-microbiota interaction in the human gastrointestinal tract: Basic concepts and in vitro approaches. Ann Microbiol 61(4):709–715

    Article  Google Scholar 

  23. Grmanova M, Vlkova E, Rada V, Homutova I (2010) Survival of bifidobacteria in adult intestinal tract. Folia Microbiol 55(3):281–285

    Article  CAS  Google Scholar 

  24. Kaneko T, Mori H, Iwata M, Meguro S (1994) Growth stimulator for bifidobacteria produced by Propionibacterium freudenreichii and several intestinal bacteria. J Dairy Sci 77(2):393–404

    Article  CAS  Google Scholar 

  25. Degnan BA, Macfarlane GT (1995) Arabinogalactan utlization in continuous cultures of Bifidobacterium longum- Effect of coculture with Bacteroides thetaiotamicron. Anaerobe 1(2):103–112

    Article  CAS  Google Scholar 

  26. Turroni F, Bottacini F, Foroni E, Mulder I, Kim JH, Zomer A, Sanchez B, Bidossi A, Ferrarini A, Giubellini V, Delledonne M, Henrissat B, Coutinho P, Oggioni M, Fitzgerald GF, Mills D, Margolles A, Kelly D, van Sinderen D, Ventura M (2010) Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci USA 107(45):19514–19519

    Article  CAS  Google Scholar 

  27. Makras L, De Vuyst L (2006) The in vitro inhibition of gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. Int Dairy J 16(9):1049–1057

    Article  CAS  Google Scholar 

  28. Falony G, Vlachou A, Verbrugghe K, De Vuyst L (2006) Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72(12):7835–7841

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by ZESPRI Group Ltd (Mount Maunganui, New Zealand), contract #24818. We acknowledge the expert advice of Glenn Gibson (University of Reading, Reading, UK), Roger Lentle (Massey University, Palmerston North, NZ), Ian Sims (Industrial Research Ltd., Lower Hutt, NZ) and Gerald Tannock (University of Otago, Dunedin, NZ). We appreciate the critical reviewing of this manuscript performed by Christine Butts and David Stevenson.

Conflict of Interest

The authors declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanthi G. Parkar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 376 kb)

ESM 2

(PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkar, S.G., Rosendale, D., Paturi, G. et al. In vitro Utilization of Gold and Green Kiwifruit Oligosaccharides by Human Gut Microbial Populations. Plant Foods Hum Nutr 67, 200–207 (2012). https://doi.org/10.1007/s11130-012-0293-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-012-0293-1

Keywords