Plant Foods for Human Nutrition

, Volume 67, Issue 1, pp 10–16

Hypolipidemic Effect of Avocado (Persea americana Mill) Seed in a Hypercholesterolemic Mouse Model

  • María Elena Pahua-Ramos
  • Alicia Ortiz-Moreno
  • Germán Chamorro-Cevallos
  • María Dolores Hernández-Navarro
  • Leticia Garduño-Siciliano
  • Hugo Necoechea-Mondragón
  • Marcela Hernández-Ortega
Original Paper

Abstract

Avocado seed contains elevated levels of phenolic compounds and exhibits antioxidant properties. We investigated the effect of Avocado Seed Flour (ASF) on the lipid levels in mice on a hyperlipidemic diet. The concentration of phenols was determined by high-performance liquid chromatography, antioxidant activity was evaluated using the Trolox equivalent antioxidant capacity method, and dietary fiber was measured using the Association of Official Analytical Chemists (AOAC) method. The LD50 of ASF was determined using Lorke’s method and hypolipidemic activity was evaluated in a hypercholesterolemic model in mice. Protocatechuic acid was the main phenolic compound found in ASF, followed by kaempferide and vanillic acid. The total phenolic content in the methanolic extract of ASF was 292.00 ± 9.81 mg gallic acid equivalents/g seed dry weight and the antioxidant activity resulted in 173.3 μmol Trolox equivalents/g DW. In addition, a high content of dietary fiber was found (34.8%). The oral LD50 for ASF was 1767 mg/kg body weight, and treatment with ASF significantly reduced the levels of total cholesterol, LDL-C, and prediction of the atherogenic index. Therefore, the antioxidant activity of phenolic compounds and dietary fiber in ASF may be responsible for the hypocholesterolemic activity of ASF in a hyperlipidemic model of mice.

Keywords

Avocado Dietary Fiber Hypolipidemic Phenolic compounds Seed 

Abbreviations

ABTS

2, 2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid)

AI

Atherogenic Index

ASF

Avocado Seed Flour

BW

Body Weight

GAE

Gallic Acid Equivalents

HDL-C

High-Density Lipoprotein Cholesterol

LDL-C

Low-Density Lipoprotein Cholesterol

LD50

Median Lethal Dose

TC

Total Cholesterol

TG

Triglycerides

Trolox

6-hydroxy-2, 5, 7, 8 tetramethylchroman-2-carboxylic acid

References

  1. 1.
    Asaolu MF, Asaolu SS, Oyeyemi AO, Aluko BT (2010) Hypolipemic effects of methanolic extract of Persea americana seeds in hypercholesterolemic rats. J Med Sci 1(14):126–128Google Scholar
  2. 2.
    Veerappan A, Miyazaki S, Kadarkaraisamy M, Ranganathan D (2007) Acute and subacute toxicity studies of Aegle marmelos Corr., an Indian medicinal plant. Phytomedicine 14(2–3):209–215CrossRefGoogle Scholar
  3. 3.
    Fogari R, Zoppi A (2004) Effect of antihypertensive agents on quality of life in the elderly. Drugs Aging 21(6):377–393CrossRefGoogle Scholar
  4. 4.
    Crews DE (2007) Senescence, aging, and disease. J Physiol Anthropol 26(3):365–372CrossRefGoogle Scholar
  5. 5.
    Durrington P (2003) Dyslipidaemia. Lancet 362(9385):717–731CrossRefGoogle Scholar
  6. 6.
    Marks D, Thorogood M, Neil HA, Humphries SE (2003) A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis 168(1):1–14CrossRefGoogle Scholar
  7. 7.
    Wang W, Bostic TR, Gu LW (2010) Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem 122(4):1193–1198CrossRefGoogle Scholar
  8. 8.
    Ozolua RI, Anaka ON, Okpo SO, Idogun SE (2009) Acute and sub-acute toxicological assessment of the aqueous seed extract of Persea americana Mill (Lauraceae) in rats. Afr J Tradit Complement Altern Med 6(4):573–578Google Scholar
  9. 9.
    Ortiz MA, Dorantes AL, Galindez MJ, Cárdenas SE (2004) Effect of a novel oil extraction method on avocado (Persea americana Mill) pulp microstructure. Plant Foods Hum Nutr 59(1):11–14CrossRefGoogle Scholar
  10. 10.
    Ferreres F, Gomes D, Valentao P, Goncalves R, Pio R, Chagas EA, Seabra RM, Andrade PB (2009) Improved loquat (Eriobotrya japonica Lindl.) cultivars: Variation of phenolics and antioxidative potential. Food Chem 114(3):1019–1027CrossRefGoogle Scholar
  11. 11.
    Sun T, Xu Z, Wu CT, Janes M, Prinyawiwatkul W, No HK (2007) Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L.). J Food Sci 72(2):S98–102CrossRefGoogle Scholar
  12. 12.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26(9–10):1231–1237CrossRefGoogle Scholar
  13. 13.
    AOAC (2000) Official methods of analysis of AOAC international, vol 14. William Horwitz. AOAC International, Washington, D.C.Google Scholar
  14. 14.
    Norma Oficial Mexicana 062-ZOO-1999. Especificaciones Técnicas para la producción, cuidado y uso de los animales de laboratorio. Secretaria de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, Estados Unidos MexicanosGoogle Scholar
  15. 15.
    Lorke D (1983) A new approach to practical acute toxicity testing. Arch Toxicol 54(4):275–287CrossRefGoogle Scholar
  16. 16.
    Pineiro V, Ortiz-Moreno A, Mora-Escobedo R, Hernandez-Navarro MD, Ceballos-Reyes G, Chamorro-Cevallos G (2010) Effect of L-arginine oral supplementation on response to myocardial infarction in hypercholesterolemic and hypertensive rats. Plant Foods Hum Nutr 65(1):31–37CrossRefGoogle Scholar
  17. 17.
    Argüelles N, Sánchez-Sandoval E, Mendieta A, Villa-Tanaca L, Garduño-Siciliano L, Jiménez F, MdC C, Medina-Franco JL, Chamorro-Cevallos G, Tamariz J (2010) Design, synthesis, and docking of highly hypolipidemic agents: Schizosaccharomyces pombe as a new model for evaluating α-asarone-based HMG-CoA reductase inhibitors. Bioorg Med Chem 18(12):4238–4248CrossRefGoogle Scholar
  18. 18.
    Rodríguez-Carpena JG, Morcuende D, Andrade MJ, Kylli P, Estevez M (2011) Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. J Agric Food Chem 59(10):5625–5635CrossRefGoogle Scholar
  19. 19.
    Terpinc P, Polak T, Makuc D, Ulrih NP, Abramovic H (2012) The occurrence and characterisation of phenolic compounds in Camelina sativa seed, cake and oil. Food Chem 131(2):580–589CrossRefGoogle Scholar
  20. 20.
    Chumark P, Khunawat P, Sanvarinda Y, Phornchirasilp S, Morales NP, Phivthong-Ngam L, Ratanachamnong P, Srisawat S, Pongrapeeporn KU (2008) The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleífera Lam. leaves. J Ethnopharmacol 116(3):439–446CrossRefGoogle Scholar
  21. 21.
    Soong YY, Barlow PJ (2004) Antioxidant activity and phenolic content of selected fruit seeds. Food Chem 88(3):411–417CrossRefGoogle Scholar
  22. 22.
    Nijjar PS, Burke FM, Bloesch A, Rader DJ (2010) Role of dietary supplements in lowering low-density lipoprotein cholesterol: A review. J Clin Lipidol 4(4):248–258CrossRefGoogle Scholar
  23. 23.
    Solà R, Bruckert E, Valls RM, Narejos S, Luque X, Castro-Cabezas M, Doménech G, Torres F, Heras M, Farrés X, Vaquer JV, Martínez JM, Almaraz MC, Anguera A (2010) Soluble fibre (Plantago ovata husk) reduces plasma low-density lipoprotein (LDL) cholesterol, triglycerides, insulin, oxidised LDL and systolic blood pressure in hypercholesterolaemic patients: A randomised trial. Atherosclerosis 211(2):630–637CrossRefGoogle Scholar
  24. 24.
    Theuwissen E, Mensink RP (2008) Water-soluble dietary fibers and cardiovascular disease. Physiol Behav 94(2):285–292CrossRefGoogle Scholar
  25. 25.
    Reyes-Caudillo E, Tecante A, Valdivia-López MA (2008) Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem 107(2):656–663CrossRefGoogle Scholar
  26. 26.
    Brai BIC, Odetola AA, Agomo PU (2007) Effects of Persea americana leaf extracts on body weight and liver lipids in rats fed hyperlipidaemic diet. Afr J Biotechnol 6(8):1007–1011Google Scholar
  27. 27.
    Taha NA, Alkhawajah AAM, Raveesha KK (2008) Acute and subacute toxicity studies of Persea americana Mill (Avocado) seed in rats. Int Jour Med Toxicol Leg Med 11(2):31–36Google Scholar
  28. 28.
    Foufelle F, Ferre P (2002) New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: A role for the transcription factor sterol regulatory element binding protein-1c. Biochem J 366(Pt 2):377–391CrossRefGoogle Scholar
  29. 29.
    Imafidon KE, Amaechina FC (2010) Effects of aqueous seed extract of Persea americana Mill. (Avocado) on blood pressure and lipid profile in hypertensive rats. Adv Biol Res 4(2):116–121Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2012

Authors and Affiliations

  • María Elena Pahua-Ramos
    • 1
  • Alicia Ortiz-Moreno
    • 1
  • Germán Chamorro-Cevallos
    • 2
  • María Dolores Hernández-Navarro
    • 3
  • Leticia Garduño-Siciliano
    • 2
  • Hugo Necoechea-Mondragón
    • 4
  • Marcela Hernández-Ortega
    • 1
  1. 1.Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMéxicoMexico
  2. 2.Departamento de Farmacia, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalMéxicoMexico
  3. 3.Departamento de Farmacia, Facultad de QuímicaUniversidad Autónoma del Estado de MéxicoTolucaMexico
  4. 4.Coordinación de Operación de Redes de InvestigaciónInstituto Politécnico NacionalMéxicoMexico

Personalised recommendations