Plant Foods for Human Nutrition

, Volume 66, Issue 2, pp 129–135 | Cite as

Antigenotoxicity and Antioxidant Activity of Acerola Fruit (Malpighia glabra L.) at Two Stages of Ripeness

  • Roberta da Silva Nunes
  • Vivian Francília Silva Kahl
  • Merielen da Silva Sarmento
  • Marc François Richter
  • Letícia Veras Costa-Lotufo
  • Felipe Augusto Rocha Rodrigues
  • Juan Andres Abin-Carriquiry
  • Marcela María Martinez
  • Scharline Ferronatto
  • Alexandre de Barros Falcão Ferraz
  • Juliana da SilvaEmail author


Genotoxic and antigenotoxic effects of acerola fruit at two stages of ripeness were investigated using mice blood cells. The results show that no ripeness stage of acerola extracts presented any genotoxic potential to damage DNA (Comet assay) or cytotoxicity (MTT assay). When antigenotoxic activity was analyzed, unripe fruit presented higher DNA protection than ripe fruit (red color) extract. The antioxidant capacity of substances also showed that unripe samples inhibit the free radical DPPH more significantly than the ripe ones. The results about determination of compounds made using HPLC showed that unripe acerola presents higher levels of vitamin C as compared to ripe acerola. Thus, vitamin C and the complex mixture of nutrients of Malpighia glabra L., and especially its ripeness stages, influenced the interaction of the fruit extract with the DNA. Acerola is usually consumed when ripe (red fruit), although it is the green fruit (unripe) that has higher potential as beneficial to DNA, protecting it against oxidative stress.


Malpighia glabra L. Acerola Genotoxicity Antigenotoxicity Vitamin C 



Ascorbic acid equivalent antioxidant capacity


Antioxidant activity


Damage frequency


Damage index


Deoxyribonucleic acid


Dimethyl sulfoxide




2,2-diphenyl-1-picrylhydrazyl radical


Ethylenediaminetetraacetic acid


Hydrochloric acid


Tumor line of human colon


Hydrogen peroxide


High performance liquid chromatography


Phosphoric acid


Sodium chloride


Sodium hydroxide


Tumor line of human breast




3-(4,5-dimethyl-2-thiazole)-2,5-diphenyl-2-H-tetrazolium bromide salt


Phosphate buffered saline


Recommended Dietary Allowance


Tumor line of human nervous system





The authors also thank Nutrilite Farm (Ceará, Brazil) for help and assistance. This work was supported by grants from the Brazilian Agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS) and Lutheran University of Brazil (ULBRA).


  1. 1.
    Kusamran WR, Tepswan A, Kupradinun P (1998) Antimutagenic and anticarcinogenic potentials of some Thai vegetables. Mutat Res 402:247–258Google Scholar
  2. 2.
    Nakamura YK, Suganuma E, Kuijama N, Sato K, Ohtsuki K (1998) Comparative bio-antimutagenicity of common vegetables and traditional vegetables in Kyoto. Biosci Biotechnol Biochem 62:1161–1165CrossRefGoogle Scholar
  3. 3.
    Nogueira MEI, Passoni MH, Biso FI, Longo MC, Cardoso CRP, dos Santos LC, Varanda EA (2006) Investigation of genotoxic and antigenotoxic activities of Melampodium divaricatum in Salmonella typhimurium. Toxicol In Vitro 20:361–366CrossRefGoogle Scholar
  4. 4.
    Machado UD (1992) Nordeste-EMBRAPA: Relatório: Avaliação e proposições. Sindicato Nacional dos Trabalhadores de Pesquisa e Desenvolvimento Agropecuário, BrasíliaGoogle Scholar
  5. 5.
    Vendramini AL, Trugo LC (2000) Chemical composition of acerola fruit (Malpighia glabra L.) at three stages of maturity. Food Chem 71:195–198CrossRefGoogle Scholar
  6. 6.
    Kawaguchi M, Tanabe H, Nagamine K (2007) Isolation and characterization of a novel flavonoid possessing a 4,2″-glycosidic linkage from green mature acerola (Malpighia emarginata DC.) fruit. Biosci Biotechnol Biochem 71:1130–1135CrossRefGoogle Scholar
  7. 7.
    USDA (National Nutrient Database for Standard) (2010)> (accessed 01.10.10)
  8. 8.
    Freitas CAS, Maia GA, Costa JMC, Figueiredo RW, Souza PHM (2006) Acerola: produção, composição, aspectos nutricionais e produtos. R Bras Agrociência 12:395–400, in portugueseGoogle Scholar
  9. 9.
    Halliwell B (1987) Oxidants and human disease: Some new concepts. FASEB J 1:358–364Google Scholar
  10. 10.
    Sizer FS, Whitney EN (2003) Nutrition: concepts and controversies, 9th edn. Thompson Wadsworth, BelmontGoogle Scholar
  11. 11.
    Hanamura T, Uchida E, Aoki H (2008) Changes of the composition in acerola (Malpighia emarginata DC.) fruit in relation to cultivar, growing region and maturity. J Sci Food Agric 88:1813–1820CrossRefGoogle Scholar
  12. 12.
    Tapas AR, Sakarkar DM, Kakde RB (2008) Flavonoids as nutraceuticals: A review. Trop J Pharm Res 7:1089–1099Google Scholar
  13. 13.
    Roberfroid M (2002) Functional food concept and its application to prebiotics. Dig Liver Dis 34:105–110CrossRefGoogle Scholar
  14. 14.
    Campelo E, Martins M, Carvalho I, Pedrosa E (1998) Teores de vitamina C em polpas de acerola (Malpighia glabra L.) congeladas. B CEPPA 16:107–113, in portugueseGoogle Scholar
  15. 15.
    OECD (1997) OECD guidelines for the testing of chemicals: in vitro mammalian chromosome aberration test, revised and new guidelines, adopted 1997. Organization for Economic Cooperation and Development, ParisGoogle Scholar
  16. 16.
    Lovell DP, Omori T (2008) Statistical issues in the use of the comet assay. Mutagenesis 23:171–182CrossRefGoogle Scholar
  17. 17.
    Szeto YT, Collins AR, Benzie IFF (2002) Effects of dietary antioxidants on DNA damage on lysed cells using a modified comet assay procedure. Mutat Res 500:31–38Google Scholar
  18. 18.
    Kapiszewska M, Soltys E, Visioli F, Cierniak A, Zajac G (2005) The protective ability of the Mediterranean plant extract against the oxidative DNA damage. The role of the radical oxygen species and the polyphenol content. J Physiol Pharmacol 56:183–197Google Scholar
  19. 19.
    Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221CrossRefGoogle Scholar
  20. 20.
    Silva J, Freitas TRO, Marinho JR, Speit G, Erdtmann B (2000) An alkaline single-cell gel electrophoresis (comet assay) assay for environmental biomonitoring with native rodents. Genet Mol Biol 23:241–245CrossRefGoogle Scholar
  21. 21.
    Nadin SB, Vargas-Roig LM, Ciocca DR (2001) A silver staining method for single-cell gel assay. J Histochem Cytochem 49:1183–1186CrossRefGoogle Scholar
  22. 22.
    British Pharmacopoeia (2007) Version 11.0-Cd-Rom. Her Majesty’s Stationary Office, LondonGoogle Scholar
  23. 23.
    Yamaguchi T, Takamura H, Matoba T, Terao J (1998) HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhidrazyl. Biosci Biotechnol Biochem 62:1201–1204CrossRefGoogle Scholar
  24. 24.
    Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112CrossRefGoogle Scholar
  25. 25.
    Higdon J (2009) Vitamin C Linnus Pauling Institute Micronut Res Opt Health. <> (accessed 01.10.10)
  26. 26.
    Franke SIR, Prá D, Silva J, Erdtmann B, Henriques JAP (2005) Possible repair action of vitamin C on DNA damage induced by methyl methanesulfonate, cyclophosphamide, FeSO4 and CuSO4 in mouse blood cells in vivo. Mutat Res 583:75–84Google Scholar
  27. 27.
    Leong LP, Shui G (2002) An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem 76:69–75CrossRefGoogle Scholar
  28. 28.
    Paredes-López O, Cervantes-Ceja M, Vigna-Pérez M, Hernández-Pérez T (2010) Berries: Improving human health and healthy aging, and promoting quality life—A review. Plant Foods Hum Nutr 65:299–308CrossRefGoogle Scholar
  29. 29.
    Seeram NP, Aviram M, Zhang Y, Henning SM, Feng L, Dreher M, Heber D (2008) Comparison of antioxidant potency of commonly consumed polyphenol-rich beverages in the United States. J Agric Food Chem 56:1415–1422CrossRefGoogle Scholar
  30. 30.
    Jawaheer B, Goburdhum D, Rugoo A (2003) Effect of processing and storage of guava into jam and juice on ascorbic acid content. Plant Foods Hum Nutr 51:1–12CrossRefGoogle Scholar
  31. 31.
    Butt VS (1980) Direct oxidases and related enzymes. In: Stumpf PK, Conn EE (eds), The Biochemistry of Plants: A Comprehensive Treatise. Academic, New York, pp 81–123, 2Google Scholar
  32. 32.
    Asenjo CF, Penaloza A, Medina P (1960) Characterization of ascorbase present in the fruit of the Malpighia punicifolia L. FASEB J 19:1–1Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Roberta da Silva Nunes
    • 1
    • 2
  • Vivian Francília Silva Kahl
    • 1
  • Merielen da Silva Sarmento
    • 1
  • Marc François Richter
    • 3
  • Letícia Veras Costa-Lotufo
    • 4
  • Felipe Augusto Rocha Rodrigues
    • 4
  • Juan Andres Abin-Carriquiry
    • 5
  • Marcela María Martinez
    • 5
  • Scharline Ferronatto
    • 6
  • Alexandre de Barros Falcão Ferraz
    • 6
  • Juliana da Silva
    • 1
    Email author
  1. 1.Laboratório de Genética Toxicológica—Programa de Pós-Graduação em Genética e Toxicologia AplicadaUniversidade Luterana do BrasilCanoasBrazil
  2. 2.Centro Universitário Luterano de Ji-ParanáUniversidade Luterana do BrasilJi-ParanáBrazil
  3. 3.Universidade Estadual do Rio Grande do Sul, UERGSPorto AlegreBrazil
  4. 4.Laboratório de Oncologia ExperimentalUniversidade Federal do Ceará, UFCFortalezaBrazil
  5. 5.Department of NeurochemistryInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
  6. 6.Laboratório de Farmacognosia e FitoquímicaUniversidade Luterana do BrasilCanoasBrazil

Personalised recommendations