Advertisement

Plant Foods for Human Nutrition

, Volume 66, Issue 1, pp 78–84 | Cite as

Phytochemical Profile, Antioxidant and Cytotoxic Activities of the Carob Tree (Ceratonia siliqua L.) Germ Flour Extracts

  • Luísa CustódioEmail author
  • Ana Luísa Escapa
  • Eliana Fernandes
  • Alba Fajardo
  • Rosa Aligué
  • Fernando Alberício
  • Nuno Neng
  • José Manuel Florêncio Nogueira
  • Anabela Romano
ORIGINAL PAPER

Abstract

This work aimed to evaluate the phytochemical content and to determine the antioxidant and cytotoxic activities of methanol extracts of the carob tree (Ceratonia siliqua L.) germ flour. The extracts were rich in phenolic compounds, had considerable antioxidant activity, and reduced the viability of cervical (HeLa) cancer cells. The chemical content and the biological activities of the extracts were significantly affected by gender and cultivar. Female cultivar Galhosa had the highest levels of phenolic compounds, and the highest antioxidant activity. Extracts from the hermaphrodite trees and from the female cultivars Galhosa and Costela/Canela exhibited the highest cytotoxic activity. The most abundant compound was theophylline. The phenolic content was correlated to both antioxidant and cytotoxic activities. Our findings provide new knowledge about the health implications of consuming food supplemented with carob germ flour.

Keywords

Alkaloids Antioxidant Antiproliferative Oxidative stress Phenolic compounds ROS Theophylline 

Abbreviations

RSA

Radical scavenging activity

Notes

Acknowledgements

This work was partially supported by CICYT (CTQ2006-03794/BQU), Instituto de Salud Carlos III (CB06_01_0074 and PI060624), the Generalitat de Catalunya (2005SGR 00662), the Institute for Research in Biomedicine, and the Barcelona Science Park. L. Custódio thanks to the Portuguese Foundation for Science and Technology (FCT) for a post-doctoral grant (grant SFRH/BPD/20736/2004). The authors thank DANISCO Portugal Industrias de Alfarroba, LDA for providing the germ flour samples.

References

  1. 1.
    Dakia P, Wathelet B, Paquot M (2007) Isolation and chemical evaluation of carob (Ceratonia siliqua L.) seed germ. Food Chem 102:1368–1374CrossRefGoogle Scholar
  2. 2.
    Bengoechea C, Romero A, Villanueva A, Moreno G, Alaiz M, Millán F, Guerrero A, Puppo MC (2008) Composition and structure of carob (Ceratonia siliqua L.) germ proteins. Food Chem 107:675–683CrossRefGoogle Scholar
  3. 3.
    Wang Y, Belton PS, Bridon H, Garanger E, Wellner N, Parker ML, Grant A, Feillet P, Noel TR (2001) Physicochemical studies of caroubin: A gluten-like protein. J Agric Food Chem 49:3414–3419CrossRefGoogle Scholar
  4. 4.
    Avallone R, Plessi M, Baraldi M, Monzani A (1997) Determination of chemical composition of carob (Ceratonia siliqua): Protein, fat, carbohydrates, and tannins. J Food Comp Anal 10:166–172CrossRefGoogle Scholar
  5. 5.
    Luthria D (2006) Significance of sample preparation in developing analytical methodologies for accurate estimation of bioactive compounds in functional foods. J Sci Food Agric 86:2266–2272CrossRefGoogle Scholar
  6. 6.
    Gülçin I, Mshvildadze V, Gepdiremen A, Elias R (2006) Antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera colchica: 3-O-(β-d-glucopyranosyl)- hederagenin. Phytother Res 20:130–134CrossRefGoogle Scholar
  7. 7.
    Custódio L, Fernandes E, Escapa AL, Aligué R, Alberício F, Romano A (2009) Antioxidant activity and in vitro inhibition of tumor cell growth by leaf extracts from the carob tree (Ceratonia siliqua L.). Pharm Biol 47:721–728CrossRefGoogle Scholar
  8. 8.
    Julkunen-Tiitto R (1985) Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J Agric Food Chem 33:213–217CrossRefGoogle Scholar
  9. 9.
    Naczk M, Amarowicz R, Pink D, Shahidi F (2000) Insoluble condensed tannins of canola/rapeseed. J Agric Food Chem 48:1758–1762CrossRefGoogle Scholar
  10. 10.
    Lamaison L, Carnat A (1990) Teneurs en acide rosmarinique, en dérivés hydroxycinnamiques totaux et activités antioxydantes chez les Apiacées, les Borraginacées et les Lamiacées médicinales. Pharm Acta Helv 65:315–320Google Scholar
  11. 11.
    Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 28:25–30Google Scholar
  12. 12.
    Wang D, Wang L, Zhu F, Zhu J, Chen XD, Zou L, Saito M, Li L (2008) In vitro and in vivo studies on the antioxidant activities of the aqueous extracts of Douchi (a traditional Chinese salt-fermented soybean food). Food Chem 107:1421–1428CrossRefGoogle Scholar
  13. 13.
    Choi Y, Jeong HS, Lee J (2007) Antioxidant activity of methanolic extracts from some grains consumed in Korea. Food Chem 103:130–138CrossRefGoogle Scholar
  14. 14.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  15. 15.
    Chang M, Ho Y, Lee P, Chan C, Lee J, Hahn L, Wang Y (2001) Areca nut extract and arecoline induced the cell cycle arrest but not apoptosis of cultured oral KB epithelial cells: Association of glutathione, reactive oxygen species and mitochondrial membrane potential. Carcinogenesis 22:1527–1535CrossRefGoogle Scholar
  16. 16.
    Li W, Gao Y, Zhao J, Wang Q (2007) Phenolic, flavonoid, and lutein ester content and antioxidant activity of 11 cultivars of Chinese marigold. J Agric Food Chem 255:8478–8484CrossRefGoogle Scholar
  17. 17.
    Barracosa P, Osório J, Cravador A (2007) Evaluation of fruit and seed diversity and characterization of carob (Ceratonia siliqua L.) cultivars in Algarve region. Sci Hortic 114:250–257CrossRefGoogle Scholar
  18. 18.
    Corsi L, Avallone R, Cosenza F, Farina F, Baraldi C, Baraldi M (2002) Antiproliferative effects of Ceratonia siliqua L. on mouse hepatocellular carcinoma cell line. Fitoterapia 73:674–684CrossRefGoogle Scholar
  19. 19.
    Ito K, Lim S, Caramori G, Cosi B, Chun KF, Adcock IM, Barnes PJ (2002) A molecular mechanism of action of theophylline: Induction of histone deacetylase activity to decrease inflammatory gene expression. PNAS 99:8921–8926CrossRefGoogle Scholar
  20. 20.
    Pleuvry BJ (2006) CNS stimulants: Basic pharmacology and relevance to anaesthesia. Anesth Int Care Med 7:60–62CrossRefGoogle Scholar
  21. 21.
    Ordoñez AAL, Gomez JD, Vattuone MA, Isla MI (2006) Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem 97:452–458CrossRefGoogle Scholar
  22. 22.
    Chon S-U, Heo B-U, Park Y-S, Kim D-K, Gorinstein S (2009) Total phenolics level, antioxidant activities and cytotoxicity of young sprouts of some traditional Korean salad plants. Plant Foods Hum Nutr 64:25–31CrossRefGoogle Scholar
  23. 23.
    Hamad İ, Erol-Dayi Ö, Pekmez M, Önay-Uçar E, Arda N (2010) Antioxidant and cytotoxic activities of Aphanes arvensis extracts. Plant Foods Hum Nutr 65:44–49CrossRefGoogle Scholar
  24. 24.
    Klenow S, Jahns F, Pool-Zobel BL, Glei M (2009) Does an extract of carob (Ceratonia siliqua L.) have chemopreventive potential related to oxidative stress and drug metabolism in human colon cells? J Agric Food Chem 57:2999–3004CrossRefGoogle Scholar
  25. 25.
    Klenow S, Glei M (2009) New insight into the influence of carob extract and gallic acid on hemin induced modulation of HT29 cell growth parameters. Toxicol in Vitro 23:1055–1061CrossRefGoogle Scholar
  26. 26.
    Miller AB (1990) Diet and cancer. Rev Oncol 3:87–95Google Scholar
  27. 27.
    Halliwell B (2007) Oxidative stress and cancer: Have we moved forward? Biochem J 401:1–11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Luísa Custódio
    • 1
    • 7
    Email author
  • Ana Luísa Escapa
    • 1
  • Eliana Fernandes
    • 1
  • Alba Fajardo
    • 2
  • Rosa Aligué
    • 2
  • Fernando Alberício
    • 3
    • 4
    • 5
  • Nuno Neng
    • 6
  • José Manuel Florêncio Nogueira
    • 6
  • Anabela Romano
    • 1
  1. 1.Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology (IBB/CGB), Faculty of Sciences and TechnologyUniversity of AlgarveFaroPortugal
  2. 2.Department of Cell Biology, School of MedicineUniversity of BarcelonaBarcelonaSpain
  3. 3.Institute for Research in BiomedicineBarcelona Science ParkBarcelonaSpain
  4. 4.CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and NanomedicineBarcelona Science ParkBarcelonaSpain
  5. 5.Department of Organic ChemistryUniversity of BarcelonaBarcelonaSpain
  6. 6.Department of Chemistry and Biochemistry and Center of Chemistry and BiochemistryUniversity of Lisbon, Faculty of SciencesLisbonPortugal
  7. 7.CCMAR—Center of Marine Sciences, Faculty of Sciences and TechnologyUniversity of AlgarveFaroPortugal

Personalised recommendations