Plant Foods for Human Nutrition

, Volume 65, Issue 4, pp 379–385 | Cite as

In Vitro Colonic Fermentation and Glycemic Response of Different Kinds of Unripe Banana Flour

  • Elizabete Wenzel Menezes
  • Milana C. T. Dan
  • Giselli H. L. Cardenette
  • Isabel Goñi
  • Luis Arturo Bello-Pérez
  • Franco M. Lajolo
ORIGINAL PAPER

Abstract

This work aimed to study the in vitro colonic fermentation profile of unavailable carbohydrates of two different kinds of unripe banana flour and to evaluate their postprandial glycemic responses. The unripe banana mass (UBM), obtained from the cooked pulp of unripe bananas (Musa acuminata, Nanicão variety), and the unripe banana starch (UBS), obtained from isolated starch of unripe banana, plantain type (Musa paradisiaca) in natura, were studied. The fermentability of the flours was evaluated by different parameters, using rat inoculum, as well as the glycemic response produced after the ingestion by healthy volunteers. The flours presented high concentration of unavailable carbohydrates, which varied in the content of resistant starch, dietary fiber and indigestible fraction (IF). The in vitro colonic fermentation of the flours was high, 98% for the UBS and 75% for the UBM when expressed by the total amount of SCFA such as acetate, butyrate and propionate in relation to lactulose. The increase in the area under the glycemic curve after ingestion of the flours was 90% lower for the UBS and 40% lower for the UBM than the increase produced after bread intake. These characteristics highlight the potential of UBM and UBS as functional ingredients. However, in vivo studies are necessary in order to evaluate the possible benefic effects of the fermentation on intestinal health.

Keywords

Dietary fiber Glycemic response In vitro fermentation Resistant starch Unavailable carbohydrates Unripe banana 

Abbreviations

AS

available starch

AUC

area under the curve

DF

dietary fiber

IF

indigestible fraction

NTCD

non-transmissible chronic diseases

RS

resistant starch

SCFA

short-chain fatty acids

TS

total starch

UBM

unripe banana mass

UBS

unripe banana starch

References

  1. 1.
    World Health Organization/Food and Agriculture Organization (2003) Diet, nutrition and prevention of chronic diseases. WHO Technical Report Series, 916. WHO, GeneveGoogle Scholar
  2. 2.
    Saura-Calixto F (2006) Evolución del concepto de fibra. In: Lajolo FM, Menezes EW (eds) Carbohidratos en alimentos regionales iberoamericanos. EDUSP, São Paulo, pp 237–253Google Scholar
  3. 3.
    Gray J (2006) Dietary fibre—definition, analysis, physiology and health. ILSI Europe Concise Monograph Series. ILSI Europe, BrusselsGoogle Scholar
  4. 4.
    Goñi I, Martín-Carrón N (2001) Fermentación colónica de fibra dietética y almidón resistente. In: Lajolo FM, Saura-Calixto F, Penna EW, Menezes EW (eds) Fibra dietética em Iberoamérica: tecnología y salud—obtención, caracterización, efecto fisiológico y aplicación en alimentos. Varela, São Paulo, pp 311–338Google Scholar
  5. 5.
    Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81(3):1031–1060Google Scholar
  6. 6.
    Hernot DC, Boileau TW, Bauer LL, Middelbos IS, Murphy MR, Swanson KS, Fahey GC Jr (2009) In vitro fermentation profiles, gas production rates, and microbiota modulation as affected by certain fructans, galactooligosaccharides, and polydextrose. J Agric Food Chem 57:1354–1361CrossRefGoogle Scholar
  7. 7.
    Wong JMW, Souza R, Kendall CWC, Emam A, Jenkins DJA (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40:235–243CrossRefGoogle Scholar
  8. 8.
    Thorburn A, Muir J, Proietto J (1993) Carbohydrate fermentation decreases hepatic glucose output in healthy subjects. Metabolism 42(6):780–785CrossRefGoogle Scholar
  9. 9.
    Martin LJM, Dumon HJW, Champ MMJ (1998) Production of short-chain fatty acids from resistant starch in a pig model. J Sci Food Agric 77:71–80CrossRefGoogle Scholar
  10. 10.
    Englyst HN, Macfarlane GT (1986) Breakdown of resistant and readily digestible starch by human gut bacteria. J Sci Food Agric 37:699–706CrossRefGoogle Scholar
  11. 11.
    Fässler C, Gill CIR, Arrigoni E, Rowland I, Amado R (2007) Fermentation of resistant starches: influence of in vitro models on colon carcinogenesis. Nutr Cancer 58(1):85–92Google Scholar
  12. 12.
    Aurore G, Parfaid B, Fahrasmane L (2009) Bananas, raw materials for making processed food products. Trends Food Sci Technol 20:78–91CrossRefGoogle Scholar
  13. 13.
    Zhang P, Whistler R, Bemiller J, Hamaker B (2005) Banana starch: production, physicochemical properties and digestibility—a review. Carbohydr Polym 59:443–458CrossRefGoogle Scholar
  14. 14.
    Juarez-Garcia E, Agama-Acevedo E, Sayago-Ayerdi SG, Rodriguez-Ambriz SL, Bello-Perez LA (2006) Composition, digestibility and application in breadmaking of banana flour. Plant Foods Hum Nutr 61:131–137CrossRefGoogle Scholar
  15. 15.
    Faisant N, Buléon A, Colonna P, Molis C, Lartigue S, Galmiche JP, Champ M (1995) Digestion of raw banana starch in the small intestine of healthy humans: structural features of resistant starch. Br J Nutr 73(1):111–123CrossRefGoogle Scholar
  16. 16.
    Tribess TB, Hernandez-Uribe JP, Mendez-Montealvo MGC, Menezes EW, Bello-Perez LA, Tadini CC (2009) Thermal properties and resistant starch content of unripe banana flour (Musa cavendishii) produced at different drying conditions. LWT Food Sci Technol 42:1022–1025CrossRefGoogle Scholar
  17. 17.
    Flores-Gorosquera E, García-Suárez FJ, Flores-Huicochea E, Nuñes-Santiago MC, González-Soto RA, Bello-Pérez LA (2004) Rendimento del proceso de extracción de almidón partir de frutos de plátano (Musa paradisiaca). Estudio em planta piloto. Acta Cient Venez 55(1):86–90Google Scholar
  18. 18.
    McCleary BV, Monaghan DA (2002) Measurement of resistant starch. J AOAC Int 85(3):665–675Google Scholar
  19. 19.
    McCleary BV, McNally M, Rossiter P (2002) Measurement of resistant starch by enzymatic digestion in starch selected plant materials: collaborative study. J AOAC Int 85(5):1103–1111Google Scholar
  20. 20.
    Cordenunsi BR, Lajolo FM (1995) Starch breakdown during banana ripening—sucrose synthase and sucrose-phosphate synthase. J Agric Food Chem 43:347–351CrossRefGoogle Scholar
  21. 21.
    Lee SC, Prosky L, Devries JW (1992) Determination of total, soluble and insoluble dietary fiber in foods. Enzymatic-gravimetric method, Mes-TRIS buffer: collaborative study. J AOAC Int 75:395–416Google Scholar
  22. 22.
    McCleary BV, Rossiter P (2004) Measurement of novel dietary fibres. J AOAC Int 87:707–711Google Scholar
  23. 23.
    Saura-Calixto F, García-Alonso A, Goñi I, Bravo L (2000) In vitro determination of the indigestible fraction in foods: an alternative to dietary fiber analysis. J Agric Food Chem 48(8):3342–3347CrossRefGoogle Scholar
  24. 24.
    Serrano J, Goñi I, Saura-Calixto F (2005) Determination of B-carotene and lutein available from green leafy vegetables by an in vitro digestion and colonic fermentation method. J Agric Food Chem 53(8):2936–2940CrossRefGoogle Scholar
  25. 25.
    Cardenette GHL Produtos derivados de banana verde (Musa spp.) e sua influência na tolerância à glicose e na fermentação colônica (2006). Doctorate thesis, Food Science Post Graduation Program, FCF, USP, São Paulo, BrazilGoogle Scholar
  26. 26.
    Goering HK, Van Soest PJ (1970) Forage fiber analyses (apparatus, reagents, procedures and some applications). In: United States Department of Agriculture (ed) Agricultural handbook, vol 379. US Govemment Printing Office, Washington, DCGoogle Scholar
  27. 27.
    Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G, Wolever TMS (2005) Glycaemic index methodology. Nutr Res Rev 18:145–171CrossRefGoogle Scholar
  28. 28.
    World Health Organization Obesity (1998) Preventing and managing the global epidemic. Report of a WHO Consultation on obesity. Geneva, 1997, WHO document WHO/NUT/NCD/98.1. WHO Available: <http://whqlibdoc.who.int/hq/1998/WHO_NUT_NCD_98.1_(p1-158).pdf>
  29. 29.
    Wolever TMS, Vorster HH, Björck I, Brand-Miller J, Brighenti F, Mann JI, Ramdath DD, Granfeldt Y, Holt S, Perry TL, Venter C, Xiaomei W (2003) Determination of the glycaemic index of foods: interlaboratory study. Eur J Clin Nutr 57:475–482CrossRefGoogle Scholar
  30. 30.
    Nascimento JRO, Junior AV, Bassinello PZ, Mainardi JA, Purgato E, Lajolo FM (2006) Beta-amylase expression and starch degradation during banana ripening. Postharvest Biol Technol 40(1):41–47CrossRefGoogle Scholar
  31. 31.
    Muir JG, Birkett A, Brown I, Jones G, O’Dea K (1995) Food processing and maize variety affects amounts of starch escaping digestion in the small intestine. Am J Clin Nutr 61:82–89Google Scholar
  32. 32.
    Englyst HN, Kingman SM (1990) Dietary fiber and resistant starch. A nutritional classification of plan polysaccharides. In: Kritchevsky D, Bonfield C, Anderson JA (eds) Dietary fiber: chemistry, physiology and health effects. Plenum Press, New York, pp 49–65Google Scholar
  33. 33.
    Menezes EW, Giuntini EB, Lajolo FM (2001) Perfil de ingestão de fibra alimentar e amido resistente pela população brasileira nas últimas três décadas. In: Lajolo FM, Saura-Calixto F, Penna EW, Menezes EW (eds) Fibra dietética en Iberoamérica: tecnología y salud. Obtención, caracterización, efecto fisiológico y aplicación en alimentos. Varela, São Paulo, pp 433–444Google Scholar
  34. 34.
    Menezes EW, Melo AT, Lima G, Lajolo FM (2004) Measurement of carbohydrate components and their impact on energy value of foods. J Food Compos Anal 17(3–4):331–338Google Scholar
  35. 35.
    Asp N-G, van Amelsvoort JMM, Hautvast JGAJ (1996) Nutritional implications of resistant starch. Nutr Res Rev 9:1–31CrossRefGoogle Scholar
  36. 36.
    Goñi I, Martín N, Saura-Calixto F (2005) In vitro digestibility and intestinal fermentation of grape seed and peel. Food Chem 90:281–286CrossRefGoogle Scholar
  37. 37.
    Campos-Vega R, Reynoso-Camacho R, Pedraza-Aboytes G, Acosta-Gallegos JA, Guzman-Madonado SH, Paredes-Lopez O, Oomah BD, Loarca-Piña G (2009) Chemical composition and in vitro polysaccharide fermentation of different beans (Phaseolus vulgaris L.). J Food Sci 74(7):59–65CrossRefGoogle Scholar
  38. 38.
    Berggren AM, Björck IME, Nyman M (1993) Short-chain fatty acid content and pH in caecum of rats given various sources of carbohydrates. J Sci Food Agric 63:397–406CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Elizabete Wenzel Menezes
    • 1
  • Milana C. T. Dan
    • 1
  • Giselli H. L. Cardenette
    • 1
  • Isabel Goñi
    • 2
  • Luis Arturo Bello-Pérez
    • 3
  • Franco M. Lajolo
    • 1
  1. 1.Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências FarmacêuticasUniversidade de São PauloSão PauloBrazil
  2. 2.Departamento de Nutrición I, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain
  3. 3.Centro de Desarrollo de Productos Bióticos del Instituto Politecnico NacionalYautepecMexico

Personalised recommendations