Skip to main content
Log in

In Vitro Colonic Fermentation and Glycemic Response of Different Kinds of Unripe Banana Flour

  • ORIGINAL PAPER
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

This work aimed to study the in vitro colonic fermentation profile of unavailable carbohydrates of two different kinds of unripe banana flour and to evaluate their postprandial glycemic responses. The unripe banana mass (UBM), obtained from the cooked pulp of unripe bananas (Musa acuminata, Nanicão variety), and the unripe banana starch (UBS), obtained from isolated starch of unripe banana, plantain type (Musa paradisiaca) in natura, were studied. The fermentability of the flours was evaluated by different parameters, using rat inoculum, as well as the glycemic response produced after the ingestion by healthy volunteers. The flours presented high concentration of unavailable carbohydrates, which varied in the content of resistant starch, dietary fiber and indigestible fraction (IF). The in vitro colonic fermentation of the flours was high, 98% for the UBS and 75% for the UBM when expressed by the total amount of SCFA such as acetate, butyrate and propionate in relation to lactulose. The increase in the area under the glycemic curve after ingestion of the flours was 90% lower for the UBS and 40% lower for the UBM than the increase produced after bread intake. These characteristics highlight the potential of UBM and UBS as functional ingredients. However, in vivo studies are necessary in order to evaluate the possible benefic effects of the fermentation on intestinal health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AS:

available starch

AUC:

area under the curve

DF:

dietary fiber

IF:

indigestible fraction

NTCD:

non-transmissible chronic diseases

RS:

resistant starch

SCFA:

short-chain fatty acids

TS:

total starch

UBM:

unripe banana mass

UBS:

unripe banana starch

References

  1. World Health Organization/Food and Agriculture Organization (2003) Diet, nutrition and prevention of chronic diseases. WHO Technical Report Series, 916. WHO, Geneve

  2. Saura-Calixto F (2006) Evolución del concepto de fibra. In: Lajolo FM, Menezes EW (eds) Carbohidratos en alimentos regionales iberoamericanos. EDUSP, São Paulo, pp 237–253

    Google Scholar 

  3. Gray J (2006) Dietary fibre—definition, analysis, physiology and health. ILSI Europe Concise Monograph Series. ILSI Europe, Brussels

    Google Scholar 

  4. Goñi I, Martín-Carrón N (2001) Fermentación colónica de fibra dietética y almidón resistente. In: Lajolo FM, Saura-Calixto F, Penna EW, Menezes EW (eds) Fibra dietética em Iberoamérica: tecnología y salud—obtención, caracterización, efecto fisiológico y aplicación en alimentos. Varela, São Paulo, pp 311–338

    Google Scholar 

  5. Topping DL, Clifton PM (2001) Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev 81(3):1031–1060

    CAS  Google Scholar 

  6. Hernot DC, Boileau TW, Bauer LL, Middelbos IS, Murphy MR, Swanson KS, Fahey GC Jr (2009) In vitro fermentation profiles, gas production rates, and microbiota modulation as affected by certain fructans, galactooligosaccharides, and polydextrose. J Agric Food Chem 57:1354–1361

    Article  CAS  Google Scholar 

  7. Wong JMW, Souza R, Kendall CWC, Emam A, Jenkins DJA (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40:235–243

    Article  CAS  Google Scholar 

  8. Thorburn A, Muir J, Proietto J (1993) Carbohydrate fermentation decreases hepatic glucose output in healthy subjects. Metabolism 42(6):780–785

    Article  CAS  Google Scholar 

  9. Martin LJM, Dumon HJW, Champ MMJ (1998) Production of short-chain fatty acids from resistant starch in a pig model. J Sci Food Agric 77:71–80

    Article  CAS  Google Scholar 

  10. Englyst HN, Macfarlane GT (1986) Breakdown of resistant and readily digestible starch by human gut bacteria. J Sci Food Agric 37:699–706

    Article  CAS  Google Scholar 

  11. Fässler C, Gill CIR, Arrigoni E, Rowland I, Amado R (2007) Fermentation of resistant starches: influence of in vitro models on colon carcinogenesis. Nutr Cancer 58(1):85–92

    Google Scholar 

  12. Aurore G, Parfaid B, Fahrasmane L (2009) Bananas, raw materials for making processed food products. Trends Food Sci Technol 20:78–91

    Article  CAS  Google Scholar 

  13. Zhang P, Whistler R, Bemiller J, Hamaker B (2005) Banana starch: production, physicochemical properties and digestibility—a review. Carbohydr Polym 59:443–458

    Article  CAS  Google Scholar 

  14. Juarez-Garcia E, Agama-Acevedo E, Sayago-Ayerdi SG, Rodriguez-Ambriz SL, Bello-Perez LA (2006) Composition, digestibility and application in breadmaking of banana flour. Plant Foods Hum Nutr 61:131–137

    Article  CAS  Google Scholar 

  15. Faisant N, Buléon A, Colonna P, Molis C, Lartigue S, Galmiche JP, Champ M (1995) Digestion of raw banana starch in the small intestine of healthy humans: structural features of resistant starch. Br J Nutr 73(1):111–123

    Article  CAS  Google Scholar 

  16. Tribess TB, Hernandez-Uribe JP, Mendez-Montealvo MGC, Menezes EW, Bello-Perez LA, Tadini CC (2009) Thermal properties and resistant starch content of unripe banana flour (Musa cavendishii) produced at different drying conditions. LWT Food Sci Technol 42:1022–1025

    Article  CAS  Google Scholar 

  17. Flores-Gorosquera E, García-Suárez FJ, Flores-Huicochea E, Nuñes-Santiago MC, González-Soto RA, Bello-Pérez LA (2004) Rendimento del proceso de extracción de almidón partir de frutos de plátano (Musa paradisiaca). Estudio em planta piloto. Acta Cient Venez 55(1):86–90

    Google Scholar 

  18. McCleary BV, Monaghan DA (2002) Measurement of resistant starch. J AOAC Int 85(3):665–675

    CAS  Google Scholar 

  19. McCleary BV, McNally M, Rossiter P (2002) Measurement of resistant starch by enzymatic digestion in starch selected plant materials: collaborative study. J AOAC Int 85(5):1103–1111

    CAS  Google Scholar 

  20. Cordenunsi BR, Lajolo FM (1995) Starch breakdown during banana ripening—sucrose synthase and sucrose-phosphate synthase. J Agric Food Chem 43:347–351

    Article  CAS  Google Scholar 

  21. Lee SC, Prosky L, Devries JW (1992) Determination of total, soluble and insoluble dietary fiber in foods. Enzymatic-gravimetric method, Mes-TRIS buffer: collaborative study. J AOAC Int 75:395–416

    CAS  Google Scholar 

  22. McCleary BV, Rossiter P (2004) Measurement of novel dietary fibres. J AOAC Int 87:707–711

    CAS  Google Scholar 

  23. Saura-Calixto F, García-Alonso A, Goñi I, Bravo L (2000) In vitro determination of the indigestible fraction in foods: an alternative to dietary fiber analysis. J Agric Food Chem 48(8):3342–3347

    Article  CAS  Google Scholar 

  24. Serrano J, Goñi I, Saura-Calixto F (2005) Determination of B-carotene and lutein available from green leafy vegetables by an in vitro digestion and colonic fermentation method. J Agric Food Chem 53(8):2936–2940

    Article  CAS  Google Scholar 

  25. Cardenette GHL Produtos derivados de banana verde (Musa spp.) e sua influência na tolerância à glicose e na fermentação colônica (2006). Doctorate thesis, Food Science Post Graduation Program, FCF, USP, São Paulo, Brazil

  26. Goering HK, Van Soest PJ (1970) Forage fiber analyses (apparatus, reagents, procedures and some applications). In: United States Department of Agriculture (ed) Agricultural handbook, vol 379. US Govemment Printing Office, Washington, DC

    Google Scholar 

  27. Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G, Wolever TMS (2005) Glycaemic index methodology. Nutr Res Rev 18:145–171

    Article  CAS  Google Scholar 

  28. World Health Organization Obesity (1998) Preventing and managing the global epidemic. Report of a WHO Consultation on obesity. Geneva, 1997, WHO document WHO/NUT/NCD/98.1. WHO Available: <http://whqlibdoc.who.int/hq/1998/WHO_NUT_NCD_98.1_(p1-158).pdf>

  29. Wolever TMS, Vorster HH, Björck I, Brand-Miller J, Brighenti F, Mann JI, Ramdath DD, Granfeldt Y, Holt S, Perry TL, Venter C, Xiaomei W (2003) Determination of the glycaemic index of foods: interlaboratory study. Eur J Clin Nutr 57:475–482

    Article  CAS  Google Scholar 

  30. Nascimento JRO, Junior AV, Bassinello PZ, Mainardi JA, Purgato E, Lajolo FM (2006) Beta-amylase expression and starch degradation during banana ripening. Postharvest Biol Technol 40(1):41–47

    Article  Google Scholar 

  31. Muir JG, Birkett A, Brown I, Jones G, O’Dea K (1995) Food processing and maize variety affects amounts of starch escaping digestion in the small intestine. Am J Clin Nutr 61:82–89

    CAS  Google Scholar 

  32. Englyst HN, Kingman SM (1990) Dietary fiber and resistant starch. A nutritional classification of plan polysaccharides. In: Kritchevsky D, Bonfield C, Anderson JA (eds) Dietary fiber: chemistry, physiology and health effects. Plenum Press, New York, pp 49–65

    Google Scholar 

  33. Menezes EW, Giuntini EB, Lajolo FM (2001) Perfil de ingestão de fibra alimentar e amido resistente pela população brasileira nas últimas três décadas. In: Lajolo FM, Saura-Calixto F, Penna EW, Menezes EW (eds) Fibra dietética en Iberoamérica: tecnología y salud. Obtención, caracterización, efecto fisiológico y aplicación en alimentos. Varela, São Paulo, pp 433–444

    Google Scholar 

  34. Menezes EW, Melo AT, Lima G, Lajolo FM (2004) Measurement of carbohydrate components and their impact on energy value of foods. J Food Compos Anal 17(3–4):331–338

    Google Scholar 

  35. Asp N-G, van Amelsvoort JMM, Hautvast JGAJ (1996) Nutritional implications of resistant starch. Nutr Res Rev 9:1–31

    Article  CAS  Google Scholar 

  36. Goñi I, Martín N, Saura-Calixto F (2005) In vitro digestibility and intestinal fermentation of grape seed and peel. Food Chem 90:281–286

    Article  Google Scholar 

  37. Campos-Vega R, Reynoso-Camacho R, Pedraza-Aboytes G, Acosta-Gallegos JA, Guzman-Madonado SH, Paredes-Lopez O, Oomah BD, Loarca-Piña G (2009) Chemical composition and in vitro polysaccharide fermentation of different beans (Phaseolus vulgaris L.). J Food Sci 74(7):59–65

    Article  Google Scholar 

  38. Berggren AM, Björck IME, Nyman M (1993) Short-chain fatty acid content and pH in caecum of rats given various sources of carbohydrates. J Sci Food Agric 63:397–406

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support granted by Fundação Coordenação de Aprefeiçoamento de Pesoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP-Process 2004/13168-8) and XI.18 Project of International Cooperation CYTED/CNPq for allowing the scientific interchange with the Universidad Complutense de Madrid, as well as Dr. Carmen C. Tadini for allowing the production of the UBM in the Chemical Engineering Dept., USP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabete Wenzel Menezes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menezes, E.W., Dan, M.C.T., Cardenette, G.H.L. et al. In Vitro Colonic Fermentation and Glycemic Response of Different Kinds of Unripe Banana Flour. Plant Foods Hum Nutr 65, 379–385 (2010). https://doi.org/10.1007/s11130-010-0190-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-010-0190-4

Keywords

Navigation