Improved Antioxidant and Anti-inflammatory Potential in Mice Consuming Sour Cherry Juice (Prunus Cerasus cv. Maraska)

  • Ana Šarić
  • Sandra Sobočanec
  • Tihomir Balog
  • Borka Kušić
  • Višnja Šverko
  • Verica Dragović-Uzelac
  • Branka Levaj
  • Zrinka Čosić
  • Željka Mačak Šafranko
  • Tatjana Marotti
Original Paper

Abstract

The present investigation tested the in vivo antioxidant efficacy (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase; Gpx), lipid peroxidation (LPO) and anti-inflammatory properties (cyclooxygenase-2; COX-2) of sour cherry juices obtained from an autochthonous cultivar (Prunus cerasus cv. Maraska) that is grown in coastal parts of Croatia. Antioxidant potential was tested in mouse tissue (blood, liver, and brain), LPO (liver, brain) and anti-inflammatory properties in glycogen elicited macrophages. Additionally, the concentration of cyanidin-3-glucoside, cyanidin-3-rutinoside, pelargonidin-3-glucoside, pelargonidin-3-rutinoside and total anthocyanins present in Prunus cerasus cv. Maraska cherry juice was determined. Mice were randomly divided into a control group (fed with commercial food pellets) and 2 experimental groups (fed with commercial food pellets with 10% or 50% of cherry juice added). Among the anthocyanins, the cyanidin-3-glucoside was present in the highest concentration. These results show antioxidant action of cherry juice through increased SOD (liver, blood) and Gpx (liver) activity and decreased LPO concentration. The study highlights cherry juice as a potent COX-2 inhibitor and antioxidant in the liver and blood of mice, but not in the brain. Thus, according to our study, Prunus cerasus cv. Maraska cherry juice might potentially be used as an antioxidant and anti-inflammatory product with beneficial health-promoting properties.

Keywords

Cherry juice Antioxidant Lipid peroxidation Anti-inflammatory Cyanidin 3-glucoside Cyclooxygenase-2 (COX-2) activity 

Abbreviations

AOE

Antioxidant enzymes

CAT

Catalase

Gpx

Glutathione peroxidase

LPO

Lipid peroxidation

SOD

Superoxide dismutase

TBARS

Thiobarbituric acid reactive substances

COX

Cyclooxygenase enzymes

References

  1. 1.
    Hou DX, Fujii M, Terahara N, Yoshimoto M (2004) Molecular mechanisms behind the chemopreventive effects of anthocyanidins. J Biomed Biotechnol 2004:321–325CrossRefGoogle Scholar
  2. 2.
    Tsuda T, Shiga K, Ohshima K, Kawakishi S, Osawa T (1996) Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochem Pharmacol 52:1033–1039CrossRefGoogle Scholar
  3. 3.
    Motohashi N, Sakagami H (2009) Anthocyanins as Functional Food Colors. In: Linguistics. H. de Hoop, P. de Swart (eds), Bioactive Heterocycles VII, pp 1.Google Scholar
  4. 4.
    Chavez-Santoscoy RA, Gutierrez-Uribe JA, Serna-Saldivar SO (2009) Phenolic composition, antioxidant capacity and in vitro cancer cell cytotoxicity of nine prickly pear (Opuntia spp.) juices. Plant Foods Hum Nutr 64:146–152CrossRefGoogle Scholar
  5. 5.
    Halliwell B (1996) Antioxidants in human health and disease. Annu Rev Nutr 16:33–50CrossRefGoogle Scholar
  6. 6.
    Seymour EM, Singer AA, Kirakosyan A, Urcuyo-Llanes DE, Kaufman PB, Bolling SF (2008) Altered hyperlipidemia, hepatic steatosis, and hepatic peroxisome proliferator-activated receptors in rats with intake of tart cherry. J Med Food 11:252–259CrossRefGoogle Scholar
  7. 7.
    Wang H, Cao G, Prior RL (1997) Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem 45:304–309CrossRefGoogle Scholar
  8. 8.
    Tall JM, Seeram NP, Zhao C, Nair MG, Meyer RA, Raja SN (2004) Tart cherry anthocyanins suppress inflammation-induced pain behavior in rat. Behav Brain Res 153:181–188CrossRefGoogle Scholar
  9. 9.
    Tsuda T, Watanabe M, Ohshima K, Norinobu S, Choi S-W, Kawakishi S, Osawa T (1994) Antioxidative activity of the anthocyanin pigments cyanidin 3-O-beta-D-glucoside and cyanidin. J. Agric. Food Chem. 42:2407–2410CrossRefGoogle Scholar
  10. 10.
    Tsuda T, Horio F, Kitoh J, Osawa T (1999) Protective effects of dietary cyanidin 3-O-beta-D-glucoside on liver ischemia-reperfusion injury in rats. Arch Biochem Biophys 368:361–366CrossRefGoogle Scholar
  11. 11.
    Chaovanalikit A, Wrolstad RE (2004) Total anthocyanins and total phenolics of fresh and processed cherries and their antioxidant properties. J Food Sci 69:FCT67–FCT72CrossRefGoogle Scholar
  12. 12.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358CrossRefGoogle Scholar
  13. 13.
    Flohé L, Ötting F (1984) Superoxide dismutase assays. Methods Enzymol 105:93–104CrossRefGoogle Scholar
  14. 14.
    Arthur JR, Boyne R (1985) Superoxide dismutase and glutathione peroxidase activities in neutrophils from selenium deficient and copper deficient cattle. Life Sci 36:1569–1575CrossRefGoogle Scholar
  15. 15.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  16. 16.
    Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169Google Scholar
  17. 17.
    Kulmacz RJ, Lands WE (1983) Requirements for hydroperoxide by the cyclooxygenase and peroxidase activities of prostaglandin H synthase. Prostaglandins 25:531–540CrossRefGoogle Scholar
  18. 18.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  19. 19.
    Kulisic-Bilusic T, Schnäbele K, Schmöller I, Dragovic-Uzelac V, Krisko A, Dejanovic B, Milos M, Pifat G (2009) Antioxidant activity versus cytotoxic and nuclear factor kappa B regulatory activities on HT-29 cells by natural fruit juices. Eur Food Res Technol 228:417–424CrossRefGoogle Scholar
  20. 20.
    Kang SY, Seeram NP, Nair MG, Bourquin LD (2003) Tart cherry anthocyanins inhibit tumor development in Apc(Min) mice and reduce proliferation of human colon cancer cells. Cancer Lett 194:13–19CrossRefGoogle Scholar
  21. 21.
    Šimunić V, Kovač S, Gašo-Sokač D, Pfannhauser W, Murkovic M (2005) Determination of anthocyanins in four Croatian cultivars of sour cherries (Prunus cerasus). Eur Food Res Technol 220:575–578CrossRefGoogle Scholar
  22. 22.
    Kim D-O, Padilla-Zakour OI (2004) Jam processing effect on phenolics and antioxidant capacity in anthocyanin-rich fruits: cherry, plum, and raspberry. J Food Sci 69:S395–S400CrossRefGoogle Scholar
  23. 23.
    Blando F, Gerardi C, Nicoletti I (2004) Sour cherry (Prunus cerasus L) anthocyanins as ingredients for functional foods. J Biomed Biotechnol 2004:253–258CrossRefGoogle Scholar
  24. 24.
    Xu JW, Ikeda K, Yamori Y (2004) Upregulation of endothelial nitric oxide synthase by cyanidin-3-glucoside, a typical anthocyanin pigment. Hypertension 44:217–222CrossRefGoogle Scholar
  25. 25.
    Wang H, Nair MG, Strasburg GM, Chang YC, Booren AM, Gray JI, DeWitt DL (1999) Antioxidant and antiinflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. J Nat Prod 62:294–296CrossRefGoogle Scholar
  26. 26.
    Seeram NP, Momin RA, Nair MG, Bourquin LD (2001) Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 8:362–369CrossRefGoogle Scholar
  27. 27.
    Kalt W, Blumberg JB, McDonald JE, Vinqvist-Tymchuk MR, Fillmore SA, Graf BA, O'Leary JM, Milbury PE (2008) Identification of anthocyanins in the liver, eye, and brain of blueberry-fed pigs. J Agric Food Chem 56:705–712CrossRefGoogle Scholar
  28. 28.
    Mazza GJ (2007) Anthocyanins and heart health. Ann Ist Super Sanita 43:369–374Google Scholar
  29. 29.
    Talavera S, Felgines C, Texier O, Besson C, Gil-Izquierdo A, Lamaison JL, Remesy C (2005) Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain. J Agric Food Chem 53:3902–3908CrossRefGoogle Scholar
  30. 30.
    Kirakosyan A, Seymour EM, Llanes DEU, Kaufman PB, Bolling SF (2009) Chemical profile and antioxidant capacities of tart cherry products. Food Chemistry 115:20CrossRefGoogle Scholar
  31. 31.
    Talavera S, Felgines C, Texier O, Besson C, Lamaison JL, Remesy C (2003) Anthocyanins are efficiently absorbed from the stomach in anesthetized rats. J Nutr 133:4178–4182Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ana Šarić
    • 1
  • Sandra Sobočanec
    • 1
  • Tihomir Balog
    • 1
  • Borka Kušić
    • 1
  • Višnja Šverko
    • 1
  • Verica Dragović-Uzelac
    • 2
  • Branka Levaj
    • 2
  • Zrinka Čosić
    • 3
  • Željka Mačak Šafranko
    • 1
  • Tatjana Marotti
    • 1
  1. 1.Division of Molecular MedicineRudjer Bošković InstituteZagrebCroatia
  2. 2.Faculty of Food Technology and BiotechnologyZagrebCroatia
  3. 3.Maraska d.d.ZadarCroatia

Personalised recommendations