Skip to main content
Log in

Yam Contributes to Improvement of Glucose Metabolism in Rats

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

To investigate whether yam improves glucose metabolism, yam-containing diets were given to Wistar rats. In a short-term experiment, fasted-rats were given 1.0 g of a control and 20% yam-containing diets. At 60 min after start of the feeding, glucose level in the yam diet group was lower or tended to be lower than that in the control diet. Insulin levels at 30 min and 60 min were significantly lower than those in the control group. In a long-term experiment, a normal diet (N) or 25% high fat diets with (Y) or without 15% yam powder (HF) were given to rats for 4 weeks. At 4 weeks, in an oral glucose tolerance test, the area under the curve (AUC) of plasma glucose level was higher in the HF group than that in the N group, whereas those in the Y groups did not differ from that in the N group. Glycosylated hemoglobin levels had similar tendency to the AUCs. Plasma leptin levels in the Y groups were significantly higher than that in the N group. In conclusion, yam may contribute to improvement of glucose metabolism. Additionally, we speculated that leptin level is possibly involved in the insulin-response to yam diets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AUC:

area under the curve

DM:

diabetes mellitus

Exp.:

experiment

GH:

glycosylated hemoglobin

GI:

glycemic index

HF:

high fat diet

RS:

resistant starch

SEM:

standard error of the mean

TG:

triacylglyceride

References

  1. Mauvais-Jarvis F, Andreelli F, Hanaire-Broutin H, Charbonnel B, Girard J (2001) Therapeutic perspectives for type 2 diabetes mellitus: molecular and clinical insights. Diabetes Metab 27:415–423

    CAS  Google Scholar 

  2. Nelson BA, Robinson KA, Buse MG (2002) Defective Akt activation is associated with glucose— but not glucosamine-induced insulin resistance. Am J Physiol Endocrinol Metab 282:E497–506

    CAS  Google Scholar 

  3. Chaikomin R, Rayner CK, Jones KL, Horowitz M (2006) Upper gastrointestinal function and glycemic control in diabetes mellitus. World J Gastroenterol 12:5611–5621

    CAS  Google Scholar 

  4. Jenkins DJ, Kendall CW, Augustin LS, Franceschi S, Hamidi M, Marchie A, Jenkins AL, Axelsen M (2002) Glycemic index: overview of implications in health and disease. Am J Clin Nutr 76:266S–273S

    CAS  Google Scholar 

  5. Wright E Jr, Scism-Bacon JL, Glass LC (2006) Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract 60:308–314

    Article  CAS  Google Scholar 

  6. Ceriello A (2005) Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 54:1–7

    Article  CAS  Google Scholar 

  7. Augustin LS, Franceschi S, Jenkins DJ, Kendall CW, La Vecchia C (2002) Glycemic index in chronic disease: a review. Eur J Clin Nutr 56:1049–1071

    Article  CAS  Google Scholar 

  8. Wylie-Rosett J, Segal-Isaacson CJ, Segal-Isaacson A (2004) Carbohydrates and increases in obesity: does the type of carbohydrate make a difference? Obes Res 12(Suppl 2):124S–129S

    Article  CAS  Google Scholar 

  9. Jenkins DJ, Wolever TM, Leeds AR, Gassull MA, Haisman P, Dilawari J, Goff DV, Metz GL, Alberti KG (1978) Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity. Br Med J 1:1392–1394

    Article  CAS  Google Scholar 

  10. Williams JA, Lai CS, Corwin H, Ma Y, Maki KC, Garleb KA, Wolf BW (2004) Inclusion of guar gum and alginate into a crispy bar improves postprandial glycemia in humans. J Nutr 134:886–889

    CAS  Google Scholar 

  11. Vuksan V, Sievenpiper JL, Xu Z, Wong EY, Jenkins AL, Beljan-Zdravkovic U, Leiter LA, Josse RG, Stavro MP (2001) onjac-Mannan and American ginsing: emerging alternative therapies for type 2 diabetes mellitus. J Am Coll Nutr 20:370S–380S discussion 381 S-383 S

    CAS  Google Scholar 

  12. van de Laar FA, Lucassen PL, Akkermans RP, van de Lisdonk EH, Rutten GE, van Weel C (2005) Alpha-glucosidase inhibitors for patients with type 2 diabetes: results from a Cochrane systematic review and meta-analysis. Diabetes Care 28:154–163

    Article  Google Scholar 

  13. Casirola DM, Ferraris RP (2006) Alpha-glucosidase inhibitors prevent diet-induced increases in intestinal sugar transport in diabetic mice. Metabolism 55:832–841

    Article  CAS  Google Scholar 

  14. Hanamura T, Mayama C, Aoki H, Hirayama Y, Shimizu M (2006) Antihyperglycemic effect of polyphenols from Acerola (Malpighia emarginata DC.) fruit. Biosci Biotechnol Biochem 70:1813–1820

    Article  CAS  Google Scholar 

  15. Iwai K, Kim MY, Onodera A, Matsue H (2006) Alpha-glucosidase inhibitory and antihyperglycemic effects of polyphenols in the fruit of Viburnum dilatatum Thunb. J Agric Food Chem 54:4588–4592

    Article  CAS  Google Scholar 

  16. Guo H, Ling W, Wang Q, Liu C, Hu Y, Xia M, Feng X, Xia X (2007) Effect of anthocyanin-rich extract from black rice (Oryza sativa L. indica) on hyperlipidemia and insulin resistance in fructose-fed rats. Plant Foods Hum Nutr 62:1–6

    Article  CAS  Google Scholar 

  17. Hee-Jeong J, Ming-Jung K, Tae-Jin S, Hyuu-A K, Sung-Ja Y, Soo-Kyung L, Hwa-Jae L, Boo-Hyeong B, Jung-In K (2006) The hypoglycemic effect of Saururus chinensis Baill in animal models of diabetes mellitus. Food Sci. Biotechnol. 15:413–417

    Google Scholar 

  18. Hikino H, Konno C, Takahashi M, Murakami M, Kato Y, Karikura M, Hayashi T (1986) Isolation and hypoglycemic activity of dioscorans A, B, C, D, E, and F; glycans of Dioscorea japonica rhizophors. Planta Med 52:168–171

    Article  CAS  Google Scholar 

  19. Tsukui M, Nagashima T, Sato H, Kozuma TT, Tanimura W (1999) Characterization of Yam (Dioscorea opposita Thunb.) Mucilage and Polysaccharide with Different Varieties. Nippon Shokuhin Kagaku Kogaku Kaishi 46:575–580

    CAS  Google Scholar 

  20. Hashimoto N, Hara H (2003) Dietary amino acids promote pancreatic protease synthesis at the translation stage in rats. J Nutr 133:3052–3057

    CAS  Google Scholar 

  21. Bunn HF, Gabbay KH, Gallop PM (1978) The glycosylation of hemoglobin: relevance to diabetes mellitus. Science 200:21–27

    Article  CAS  Google Scholar 

  22. Toyoshima Y, Gavrilova O, Yakar S, Jou W, Pack S, Asghar Z, Wheeler MB, LeRoith D (2005) Leptin improves insulin resistance and hyperglycemia in a mouse model of type 2 diabetes. Endocrinology 146:4024–4035

    Article  CAS  Google Scholar 

  23. Steinberg GR, Rush JW, Dyck DJ (2003) AMPK expression and phosphorylation are increased in rodent muscle after chronic leptin treatment. Am J Physiol Endocrinol Metab 284:E648–654

    CAS  Google Scholar 

  24. Dube JJ, Bhatt BA, Dedousis N, Bonen A, O’Doherty RM (2007) Leptin, skeletal muscle lipids, and lipid-induced insulin resistance. Am J Physiol Regul Integr Comp Physiol 293:R642–650

    CAS  Google Scholar 

  25. El-Haschimi K, Pierroz DD, Hileman SM, Bjorbaek C, Flier JS (2000) Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest 105:1827–1832

    Article  CAS  Google Scholar 

  26. Yamazaki M, Nishimura T (1992) Induction of neutrophil accumulation by vegetable juice. Biosci Biotechnol Biochem 56:150–151

    Article  CAS  Google Scholar 

  27. McAnuff MA, Harding WW, Omoruyi FO, Jacobs H, Morrison EY, Asemota HN (2005) Hypoglycemic effects of steroidal sapogenins isolated from Jamaican bitter yam, Dioscorea polygonoides. Food Chem Toxicol 43:1667–1672

    Article  CAS  Google Scholar 

  28. McAnuff-Harding MA, Omoruyi FO, Asemota HN (2006) Intestinal disaccharidases and some renal enzymes in streptozotocin-induced diabetic rats fed sapogenin extract from bitter yam (Dioscorea polygonoides). Life Sci 78:2595–2600

    Article  CAS  Google Scholar 

  29. Hou WC, Hsu FL, Lee MH (2002) Yam (Dioscorea batatas) tuber mucilage exhibited antioxidant activities in vitro. Planta Med 68:1072–1076

    Article  CAS  Google Scholar 

  30. Jeon JR, Lee JS, Lee CH, Kim JY, Kim SD, Nam DH (2006) Effect of ethanol extract of dried Chinese yam (Dioscorea batatas) flour containing dioscin on gastrointestinal function in rat model. Arch Pharm Res 29:348–353

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from Cooperation for Innovative Technology and Advanced Research in Evolutional Area (City Area Program). The authors thank Minako Saito with her skillful assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Hashimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, N., Noda, T., Kim, SJ. et al. Yam Contributes to Improvement of Glucose Metabolism in Rats. Plant Foods Hum Nutr 64, 193–198 (2009). https://doi.org/10.1007/s11130-009-0126-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-009-0126-z

Keywords

Navigation