Plant Foods for Human Nutrition

, Volume 64, Issue 2, pp 94–101 | Cite as

Chemical and Functional Characterization of Kañiwa (Chenopodium pallidicaule) Grain, Extrudate and Bran

  • Ritva Repo-Carrasco-Valencia
  • Alexander Acevedo de La Cruz
  • Julio Cesar Icochea Alvarez
  • Heikki Kallio
Original Paper

Abstract

Cereals provide a good source of dietary fibre and other important compounds with nutritional potential, such as phenolic compounds, antioxidants, minerals and vitamins. Although native Andean cereals are known to have high nutritional value, their minor components have not been studied thoroughly. In this study, two varieties of a native Andean crop, kañiwa (Chenopodium pallidicaule), were investigated as sources of dietary fibre and specific antioxidant compounds. Two products, an extrudate and bran, were also prepared and their functional properties and bioactive compounds were determined. Both varieties were rich in total dietary fibre and lignin, and the phenolic components analyzed had high antioxidant activity. The extrudates had good functional properties, such as degree of gelatinization, sectional expansion index and water solubility index; the bran was high in bioactive compounds, such as total phenolics. In conclusion, kañiwa may offer an alternative to traditional cereals as a health-promoting food ingredient.

Keywords

Chenopodium pallidicaule Dietary fibre Extrusion kañiwa 

Abbreviations

CEC

cation exchange capacity

d.b.

dry basis

DG

degree of gelatinization

DPPH

2,2-diphenyl-1-picrylhydrazyl

IIF

insoluble indigestible fraction

SD

standard deviation

SEI

sectional expansion index

SIF

soluble indigestible fraction

TIF

total indigestible fraction

WAI

water absorption index

WSI

water solubility index

References

  1. 1.
    National Research Council (1989) Lost crops of the Incas: Little-known plants of the andes with promise for worldwide cultivation. National Academy Press, Washington, DCGoogle Scholar
  2. 2.
    Gade D (1970) Ethnobotany of cañihua (Chenopodium pallidicaule), rustic seed crop of the Altiplano. Econ Bot 24:55–61Google Scholar
  3. 3.
    White P, Alvistur E, Dias C, Vinas E, White H, Collazos C (1955) Nutrient content and protein quality of quinoa and cañihua, edible seed products of the Andes mountains. J Agric Food Chem 6:531–534. doi:10.1021/jf60052a009 CrossRefGoogle Scholar
  4. 4.
    DeBruin A (1964) Investigation of the food value of quinoa and cañihua seed. J Food Sci 26:872–876CrossRefGoogle Scholar
  5. 5.
    Gross R, Koch F, Malaga I, de Miranda A, Schöneberger H, Trugo L (1989) Chemical composition and protein quality of some local Andean food sources. Food Chem 34:25–34. doi:10.1016/0308-8146(89)90030–7 CrossRefGoogle Scholar
  6. 6.
    Repo-Carrasco R, Espinoza C, Jacobsen S-E (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule). Food Rev Int 19:179–189. doi:10.1081/FRI-120018884 CrossRefGoogle Scholar
  7. 7.
    Rastrelli L, De Simone F, Schettino O, Dini A (1996) Constituents of Chenopodium pallidicaule (canihua) seeds: isolation and characterization of new triterpene saponins. J Agric Food Chem 44:3528–3533. doi:10.1021/jf950253p CrossRefGoogle Scholar
  8. 8.
    Fardet A, Rock E, Remesy C (2008) Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo. J Cer Sci 48(2):258–276. doi:10.1016/jcs.2008.01.002 CrossRefGoogle Scholar
  9. 9.
    Rastrelli L, Saturnino P, Schettino O, Dini A (1995) Studies on the constituents of Chenopodium pallidicaule (canihua) seeds. Isolation and characterization of two new flavonol glycosides. J Agric Food Chem 43:2020–2024. doi:10.1021/jf00056a012 CrossRefGoogle Scholar
  10. 10.
    Peñarrieta M, Alvarado A, Åkesson B, Bergenståhl B (2008) Total antioxidant capacity and content of flavonoids and other phenolic compounds in canihua (Chenopodium pallidicaule): An Andean pseudocereal. Mol Nutr Food Res 52:708–717. doi:10.1002/mnfr.200700189 CrossRefGoogle Scholar
  11. 11.
    AOAC (1995) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Washington, DCGoogle Scholar
  12. 12.
    AACC (1995) Approved Methods of the AACC, 10th edn. American Association of Cereal Chemists, St. PaulGoogle Scholar
  13. 13.
    AACC (2000) Approved Methods of the AACC, 10th edn. American Association of Cereal Chemists, St. PaulGoogle Scholar
  14. 14.
    Schmidt-Hebbel H (1986) Toxicos quimicos en alimentos: Avances en su identificación, prevision y deintoxicacion. Editorial Fundacion Chile, SantiagoGoogle Scholar
  15. 15.
    Brand-Williams W, Cuvelier M, Berset C (1995) Use of free radical method to evaluate antioxidant activity. Lebenson Wiss Technol 28:25–30. doi:10.1016/S0023-6438(95)80008-5 Google Scholar
  16. 16.
    Swain T, Hillis E (1959) The phenolic constituents of Prunus domestica. J Sci Food Agric 10:63–68. doi:10.1002/jsfa.2740100110 CrossRefGoogle Scholar
  17. 17.
    Saura-Calixto F, Garcia-Alonso A, Goñi I, Bravo L (2000) In vitro determination of the indigestible fraction in foods: An alternative to dietary fiber analysis. J Agric Chem 48:3342–3347. doi:10.1021/jf0000373 CrossRefGoogle Scholar
  18. 18.
    Dogan H, Karwe M (2003) Physicochemical properties of quinoa extrudates. Food Sci Technol Int 2:101–114. doi:10.1177/1082013203009002006 CrossRefGoogle Scholar
  19. 19.
    Birch G, Priesty R (1973) Degree of gelatinization of cooked rice. Stärke 25:98–103. doi:10.1002/star.19730250308 CrossRefGoogle Scholar
  20. 20.
    Muller H (1978) Introducción a la Reología de los Alimentos. Editorial Acribia, ZaragozaGoogle Scholar
  21. 21.
    Robertson J, Eastwood M (1981) A method for measure the water-holding properties of dietary fiber using suction pressure. Br J Nutr 46:247–255. doi:10.1079/BJN19810030 CrossRefGoogle Scholar
  22. 22.
    Tamayo Y, Bermudez A (1998) Los residuos vegetales de la industria de jugo de naranja como fuente de fibra dietetica. In: Lajolo F, Wenzel E (eds) Temas en Tecnología de Alimentos. Cyted, Sao Paolo, pp 181–189Google Scholar
  23. 23.
    McConnel A, Eastwood M, Mitchell W (1974) Physical characteristics of vegetable foodstuffs that would influence bowel function. J Sci Food Agric 25:1457–1464. doi:10.1002/jsfa.2740251205 CrossRefGoogle Scholar
  24. 24.
    Nyman M, Siljeström M, Pedersen B, Bach Knudsen K, Asp N, Johansson C, Eggum O (1984) Dietary fiber content and composition in six cereals at different extraction rates. Cer Chem 61:14–19Google Scholar
  25. 25.
    Charalampopoulus D, Wang R, Pandiella S, Webb C (2002) Application of cereals and cereal components in functional foods: A review. Int J Food Micr 79:131–141. doi:10.1016/S0168-1605(02)00187-3 CrossRefGoogle Scholar
  26. 26.
    Gorinstein S, Medina Vargas O, Jaramillo N, Arnao Salas I, Martinez Ayala A, Arancibia-Avila P, Toledo F, Katrich E, Trakhtenberg S (2007) The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals. Eur Food Res Technol 225:321–328. doi:10.1007/s00217-006-0417-7 CrossRefGoogle Scholar
  27. 27.
    Yawadio Nsimba R, Kikuzaki H, Konishi Y (2008) Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem 106:760–766. doi:10.1016/j.foodchem.2007.06.004 CrossRefGoogle Scholar
  28. 28.
    Guzman-Maldonado S, Paredes-Lopez O (1998) Functional products of plants indigenous to Latin America. Amaranth and quinoa, common beans and botanicals. In: Mazza G (ed) Functional foods. biochemical and processing aspects. Technomic Publishing Company, Lancaster, pp 293–328Google Scholar
  29. 29.
    Gualberto D, Bergman C, Kazemzadeh M, Weber C (1997) Effect of extrusion processing on the soluble and insoluble fiber and phytic acid contents of cereal brans. Plant Foods Hum Nutr 51:187–198. doi:10.1023/A:1007941032726 CrossRefGoogle Scholar
  30. 30.
    Reyes F, Villareal E, Cisneros-Zevallos L (2007) The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chem 101:1254–1262. doi:10.1016/j.foodchem.2006.03.032 CrossRefGoogle Scholar
  31. 31.
    Villarreal-Lozoya J, Lombardini L, Cisneros-Zevallos L (2007) Phytochemical constituents and antioxidant capacity of different pecan [Caraya illinoinensis (Wangenh.) K. Koch] cultivars. Food Chem 102:1241–1249. doi:10.1016/j.foodchem.2006.07.024 Google Scholar
  32. 32.
    Miller H, Rigelhof F, Marquart L, Prakash A, Kanter M (2000) Whole grain products and antioxidants. Cereal Foods World 45:59–63Google Scholar
  33. 33.
    Cevallos-Casals B, Cisneros-Zevallos L (2003) Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweet potato. J Agric Food Chem 51:3313–3319. doi:10.1021/jf034109c CrossRefGoogle Scholar
  34. 34.
    Campos C, Noratto G, Chirinos R, Arbizu C, Roca W, Cisneros-Zevallos L (2006) Antioxidant capacity and secondary metabolites in four species of Andean tuber crops: native potato (Solanum sp.), mashua (Tropaeolum tuberosum Ruiz & Pavo’ n), Oca (Oxalis tuberosa Molina) and ulluco (Ullucus tuberosus Caldas). J Sci Food Agric 86:1481–1488. doi:10.1002/jsfa.2529 CrossRefGoogle Scholar
  35. 35.
    Frochlich W, Hestangen B (1982) Dietary fiber content of different cereal products in Norway. Cer Chem 60:82–83Google Scholar
  36. 36.
    Björck M, Nyman M, Asp N (1984) Extrusion cooking and dietary fiber. Effects on dietary fiber content and on degradation in the rat intestinal tract. Cer Chem 61:174–179Google Scholar
  37. 37.
    Huth M, Dongowski G, Gebhardt E, Flammet W (2000) Functional properties of dietary fiber enriched extrudates from barley. J Cereal Sci 32:115–128. doi:10.1006/jcrs.2000.0330 CrossRefGoogle Scholar
  38. 38.
    Gonzalez-Soto R, Sanchez-Hernandez L, Solorzaferia J, Nuñez-Santiago C, Flores-Huicochea E, Bello-Perez A (2006) Resistant starch production from non-conventional starch sources by extrusion. Food Sci Technol Int 12:5–11. doi:10.1177/1082013206060735 CrossRefGoogle Scholar
  39. 39.
    Benchaar C, Vernay M, Bayourthe C, Moncoulon R (1994) Effects of extrusion of whole horse beans on protein digestion and amino acid absorption in dairy cows. J Dairy Sci 77:1360–1371CrossRefGoogle Scholar
  40. 40.
    Harper J (1981) Extrusion of foods. Volume I and II. CRC, Boca RatonGoogle Scholar
  41. 41.
    Gambus H, Golachowski A, Bala-Piasek A, Ziobro R, Nowotna A, Surowka K (1999) Functional properties of starch extrudates. Part 1. Dependence of extrudate properties on starch water content. Electronic Journal of Polish Agricultural Universities. Food Sci Technol 2:1–6Google Scholar
  42. 42.
    Lee E, Ryu G, Lim S (1999) Effects of processing parameters on physical properties of corn starch extrudates expanded using supercritical CO2 injection. Cer Chem 76:63–69. doi:10.1094/CCHEM.1999.76.1.63 CrossRefGoogle Scholar
  43. 43.
    Gomez M, Aguilera J (1983) Changes in the starch fraction during extrusion cooking of corn. J Food Sci 48:378–381. doi:10.1111/j.1365-2621.1983.tb10747.x CrossRefGoogle Scholar
  44. 44.
    Gutkoski L, El-Dash A (1999) Effect of extrusion process variables on physical and chemical properties of extruded oat products. Plant Foods Hum Nutr 54:315–325. doi:10.1023/A:1008101209353 CrossRefGoogle Scholar
  45. 45.
    Fernandez M, Rodriguez J (2001) Tecnologia para la obtencion de fibra dietética a partir de materias primas regionales. La experiencia en Cuba. In: Lajolo F, Saura-Calixto F, Wittig E, Wenzel E (eds) Fibra Dietética en Iberoamérica: Tecnologia y Salud. Editorial Varela, Sao Paulo, pp 211–236Google Scholar
  46. 46.
    Lopez G, Ros G, Rincon F, Periago M, Martinez C, Ortuño J (1997) Propiedades funcionales de la fibra dietética. Mecanismos de acción en el tracto gastrointestinal. Arch Latinoam Nutr 47:203–207Google Scholar
  47. 47.
    Ramos S, Moulay L, Granado-Serrano A, Vilanova O, Muguerza B, Goya L, Bravo L (2008) Hypolipidemic effect in cholesterol-fed rats of a soluble fiber-rich product obtained from cocoa husk. J Agric Food Chem 56(16):6985–6993. doi:10.1021/jf8009816 CrossRefGoogle Scholar
  48. 48.
    Zambrano M, Melendez R, Gallardo Y (2001) Propiedades funcionales y metodologia para su evaluacion en fibra dietetica. In: Lajolo F, Saura-Calixto F, Wittig E, Wenzel E (eds) Fibra Dietetica en Iberoamérica: Tecnologia y Salud. Varela, Sao Paulo, pp 195–209Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ritva Repo-Carrasco-Valencia
    • 1
  • Alexander Acevedo de La Cruz
    • 1
  • Julio Cesar Icochea Alvarez
    • 1
  • Heikki Kallio
    • 2
  1. 1.Department of Food EngineeringAgrarian University La MolinaLimaPeru
  2. 2.Department of Biochemistry and Food ChemistryUniversity of TurkuTurkuFinland

Personalised recommendations