Skip to main content
Log in

Chemical and Functional Characterization of Kañiwa (Chenopodium pallidicaule) Grain, Extrudate and Bran

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Cereals provide a good source of dietary fibre and other important compounds with nutritional potential, such as phenolic compounds, antioxidants, minerals and vitamins. Although native Andean cereals are known to have high nutritional value, their minor components have not been studied thoroughly. In this study, two varieties of a native Andean crop, kañiwa (Chenopodium pallidicaule), were investigated as sources of dietary fibre and specific antioxidant compounds. Two products, an extrudate and bran, were also prepared and their functional properties and bioactive compounds were determined. Both varieties were rich in total dietary fibre and lignin, and the phenolic components analyzed had high antioxidant activity. The extrudates had good functional properties, such as degree of gelatinization, sectional expansion index and water solubility index; the bran was high in bioactive compounds, such as total phenolics. In conclusion, kañiwa may offer an alternative to traditional cereals as a health-promoting food ingredient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CEC:

cation exchange capacity

d.b.:

dry basis

DG:

degree of gelatinization

DPPH:

2,2-diphenyl-1-picrylhydrazyl

IIF:

insoluble indigestible fraction

SD:

standard deviation

SEI:

sectional expansion index

SIF:

soluble indigestible fraction

TIF:

total indigestible fraction

WAI:

water absorption index

WSI:

water solubility index

References

  1. National Research Council (1989) Lost crops of the Incas: Little-known plants of the andes with promise for worldwide cultivation. National Academy Press, Washington, DC

    Google Scholar 

  2. Gade D (1970) Ethnobotany of cañihua (Chenopodium pallidicaule), rustic seed crop of the Altiplano. Econ Bot 24:55–61

    Google Scholar 

  3. White P, Alvistur E, Dias C, Vinas E, White H, Collazos C (1955) Nutrient content and protein quality of quinoa and cañihua, edible seed products of the Andes mountains. J Agric Food Chem 6:531–534. doi:10.1021/jf60052a009

    Article  Google Scholar 

  4. DeBruin A (1964) Investigation of the food value of quinoa and cañihua seed. J Food Sci 26:872–876

    Article  Google Scholar 

  5. Gross R, Koch F, Malaga I, de Miranda A, Schöneberger H, Trugo L (1989) Chemical composition and protein quality of some local Andean food sources. Food Chem 34:25–34. doi:10.1016/0308-8146(89)90030–7

    Article  CAS  Google Scholar 

  6. Repo-Carrasco R, Espinoza C, Jacobsen S-E (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule). Food Rev Int 19:179–189. doi:10.1081/FRI-120018884

    Article  Google Scholar 

  7. Rastrelli L, De Simone F, Schettino O, Dini A (1996) Constituents of Chenopodium pallidicaule (canihua) seeds: isolation and characterization of new triterpene saponins. J Agric Food Chem 44:3528–3533. doi:10.1021/jf950253p

    Article  CAS  Google Scholar 

  8. Fardet A, Rock E, Remesy C (2008) Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo. J Cer Sci 48(2):258–276. doi:10.1016/jcs.2008.01.002

    Article  CAS  Google Scholar 

  9. Rastrelli L, Saturnino P, Schettino O, Dini A (1995) Studies on the constituents of Chenopodium pallidicaule (canihua) seeds. Isolation and characterization of two new flavonol glycosides. J Agric Food Chem 43:2020–2024. doi:10.1021/jf00056a012

    Article  CAS  Google Scholar 

  10. Peñarrieta M, Alvarado A, Åkesson B, Bergenståhl B (2008) Total antioxidant capacity and content of flavonoids and other phenolic compounds in canihua (Chenopodium pallidicaule): An Andean pseudocereal. Mol Nutr Food Res 52:708–717. doi:10.1002/mnfr.200700189

    Article  CAS  Google Scholar 

  11. AOAC (1995) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Washington, DC

    Google Scholar 

  12. AACC (1995) Approved Methods of the AACC, 10th edn. American Association of Cereal Chemists, St. Paul

    Google Scholar 

  13. AACC (2000) Approved Methods of the AACC, 10th edn. American Association of Cereal Chemists, St. Paul

    Google Scholar 

  14. Schmidt-Hebbel H (1986) Toxicos quimicos en alimentos: Avances en su identificación, prevision y deintoxicacion. Editorial Fundacion Chile, Santiago

    Google Scholar 

  15. Brand-Williams W, Cuvelier M, Berset C (1995) Use of free radical method to evaluate antioxidant activity. Lebenson Wiss Technol 28:25–30. doi:10.1016/S0023-6438(95)80008-5

    CAS  Google Scholar 

  16. Swain T, Hillis E (1959) The phenolic constituents of Prunus domestica. J Sci Food Agric 10:63–68. doi:10.1002/jsfa.2740100110

    Article  CAS  Google Scholar 

  17. Saura-Calixto F, Garcia-Alonso A, Goñi I, Bravo L (2000) In vitro determination of the indigestible fraction in foods: An alternative to dietary fiber analysis. J Agric Chem 48:3342–3347. doi:10.1021/jf0000373

    Article  CAS  Google Scholar 

  18. Dogan H, Karwe M (2003) Physicochemical properties of quinoa extrudates. Food Sci Technol Int 2:101–114. doi:10.1177/1082013203009002006

    Article  Google Scholar 

  19. Birch G, Priesty R (1973) Degree of gelatinization of cooked rice. Stärke 25:98–103. doi:10.1002/star.19730250308

    Article  CAS  Google Scholar 

  20. Muller H (1978) Introducción a la Reología de los Alimentos. Editorial Acribia, Zaragoza

    Google Scholar 

  21. Robertson J, Eastwood M (1981) A method for measure the water-holding properties of dietary fiber using suction pressure. Br J Nutr 46:247–255. doi:10.1079/BJN19810030

    Article  CAS  Google Scholar 

  22. Tamayo Y, Bermudez A (1998) Los residuos vegetales de la industria de jugo de naranja como fuente de fibra dietetica. In: Lajolo F, Wenzel E (eds) Temas en Tecnología de Alimentos. Cyted, Sao Paolo, pp 181–189

    Google Scholar 

  23. McConnel A, Eastwood M, Mitchell W (1974) Physical characteristics of vegetable foodstuffs that would influence bowel function. J Sci Food Agric 25:1457–1464. doi:10.1002/jsfa.2740251205

    Article  Google Scholar 

  24. Nyman M, Siljeström M, Pedersen B, Bach Knudsen K, Asp N, Johansson C, Eggum O (1984) Dietary fiber content and composition in six cereals at different extraction rates. Cer Chem 61:14–19

    CAS  Google Scholar 

  25. Charalampopoulus D, Wang R, Pandiella S, Webb C (2002) Application of cereals and cereal components in functional foods: A review. Int J Food Micr 79:131–141. doi:10.1016/S0168-1605(02)00187-3

    Article  Google Scholar 

  26. Gorinstein S, Medina Vargas O, Jaramillo N, Arnao Salas I, Martinez Ayala A, Arancibia-Avila P, Toledo F, Katrich E, Trakhtenberg S (2007) The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals. Eur Food Res Technol 225:321–328. doi:10.1007/s00217-006-0417-7

    Article  CAS  Google Scholar 

  27. Yawadio Nsimba R, Kikuzaki H, Konishi Y (2008) Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chem 106:760–766. doi:10.1016/j.foodchem.2007.06.004

    Article  CAS  Google Scholar 

  28. Guzman-Maldonado S, Paredes-Lopez O (1998) Functional products of plants indigenous to Latin America. Amaranth and quinoa, common beans and botanicals. In: Mazza G (ed) Functional foods. biochemical and processing aspects. Technomic Publishing Company, Lancaster, pp 293–328

    Google Scholar 

  29. Gualberto D, Bergman C, Kazemzadeh M, Weber C (1997) Effect of extrusion processing on the soluble and insoluble fiber and phytic acid contents of cereal brans. Plant Foods Hum Nutr 51:187–198. doi:10.1023/A:1007941032726

    Article  CAS  Google Scholar 

  30. Reyes F, Villareal E, Cisneros-Zevallos L (2007) The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chem 101:1254–1262. doi:10.1016/j.foodchem.2006.03.032

    Article  CAS  Google Scholar 

  31. Villarreal-Lozoya J, Lombardini L, Cisneros-Zevallos L (2007) Phytochemical constituents and antioxidant capacity of different pecan [Caraya illinoinensis (Wangenh.) K. Koch] cultivars. Food Chem 102:1241–1249. doi:10.1016/j.foodchem.2006.07.024

    CAS  Google Scholar 

  32. Miller H, Rigelhof F, Marquart L, Prakash A, Kanter M (2000) Whole grain products and antioxidants. Cereal Foods World 45:59–63

    Google Scholar 

  33. Cevallos-Casals B, Cisneros-Zevallos L (2003) Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweet potato. J Agric Food Chem 51:3313–3319. doi:10.1021/jf034109c

    Article  CAS  Google Scholar 

  34. Campos C, Noratto G, Chirinos R, Arbizu C, Roca W, Cisneros-Zevallos L (2006) Antioxidant capacity and secondary metabolites in four species of Andean tuber crops: native potato (Solanum sp.), mashua (Tropaeolum tuberosum Ruiz & Pavo’ n), Oca (Oxalis tuberosa Molina) and ulluco (Ullucus tuberosus Caldas). J Sci Food Agric 86:1481–1488. doi:10.1002/jsfa.2529

    Article  CAS  Google Scholar 

  35. Frochlich W, Hestangen B (1982) Dietary fiber content of different cereal products in Norway. Cer Chem 60:82–83

    Google Scholar 

  36. Björck M, Nyman M, Asp N (1984) Extrusion cooking and dietary fiber. Effects on dietary fiber content and on degradation in the rat intestinal tract. Cer Chem 61:174–179

    Google Scholar 

  37. Huth M, Dongowski G, Gebhardt E, Flammet W (2000) Functional properties of dietary fiber enriched extrudates from barley. J Cereal Sci 32:115–128. doi:10.1006/jcrs.2000.0330

    Article  CAS  Google Scholar 

  38. Gonzalez-Soto R, Sanchez-Hernandez L, Solorzaferia J, Nuñez-Santiago C, Flores-Huicochea E, Bello-Perez A (2006) Resistant starch production from non-conventional starch sources by extrusion. Food Sci Technol Int 12:5–11. doi:10.1177/1082013206060735

    Article  CAS  Google Scholar 

  39. Benchaar C, Vernay M, Bayourthe C, Moncoulon R (1994) Effects of extrusion of whole horse beans on protein digestion and amino acid absorption in dairy cows. J Dairy Sci 77:1360–1371

    Article  CAS  Google Scholar 

  40. Harper J (1981) Extrusion of foods. Volume I and II. CRC, Boca Raton

    Google Scholar 

  41. Gambus H, Golachowski A, Bala-Piasek A, Ziobro R, Nowotna A, Surowka K (1999) Functional properties of starch extrudates. Part 1. Dependence of extrudate properties on starch water content. Electronic Journal of Polish Agricultural Universities. Food Sci Technol 2:1–6

    Google Scholar 

  42. Lee E, Ryu G, Lim S (1999) Effects of processing parameters on physical properties of corn starch extrudates expanded using supercritical CO2 injection. Cer Chem 76:63–69. doi:10.1094/CCHEM.1999.76.1.63

    Article  CAS  Google Scholar 

  43. Gomez M, Aguilera J (1983) Changes in the starch fraction during extrusion cooking of corn. J Food Sci 48:378–381. doi:10.1111/j.1365-2621.1983.tb10747.x

    Article  Google Scholar 

  44. Gutkoski L, El-Dash A (1999) Effect of extrusion process variables on physical and chemical properties of extruded oat products. Plant Foods Hum Nutr 54:315–325. doi:10.1023/A:1008101209353

    Article  CAS  Google Scholar 

  45. Fernandez M, Rodriguez J (2001) Tecnologia para la obtencion de fibra dietética a partir de materias primas regionales. La experiencia en Cuba. In: Lajolo F, Saura-Calixto F, Wittig E, Wenzel E (eds) Fibra Dietética en Iberoamérica: Tecnologia y Salud. Editorial Varela, Sao Paulo, pp 211–236

    Google Scholar 

  46. Lopez G, Ros G, Rincon F, Periago M, Martinez C, Ortuño J (1997) Propiedades funcionales de la fibra dietética. Mecanismos de acción en el tracto gastrointestinal. Arch Latinoam Nutr 47:203–207

    CAS  Google Scholar 

  47. Ramos S, Moulay L, Granado-Serrano A, Vilanova O, Muguerza B, Goya L, Bravo L (2008) Hypolipidemic effect in cholesterol-fed rats of a soluble fiber-rich product obtained from cocoa husk. J Agric Food Chem 56(16):6985–6993. doi:10.1021/jf8009816

    Article  CAS  Google Scholar 

  48. Zambrano M, Melendez R, Gallardo Y (2001) Propiedades funcionales y metodologia para su evaluacion en fibra dietetica. In: Lajolo F, Saura-Calixto F, Wittig E, Wenzel E (eds) Fibra Dietetica en Iberoamérica: Tecnologia y Salud. Varela, Sao Paulo, pp 195–209

    Google Scholar 

Download references

Acknowledgements

Financial support from CONCYTEC (Concejo Nacional de Ciencia, Tecnología e Innovacion Tecnologica) is gratefully acknowledged. We thank Dr. Seppo Salminen for his critical reading and helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ritva Repo-Carrasco-Valencia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Repo-Carrasco-Valencia, R., Acevedo de La Cruz, A., Icochea Alvarez, J.C. et al. Chemical and Functional Characterization of Kañiwa (Chenopodium pallidicaule) Grain, Extrudate and Bran. Plant Foods Hum Nutr 64, 94–101 (2009). https://doi.org/10.1007/s11130-009-0109-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-009-0109-0

Keywords

Navigation