Plant Foods for Human Nutrition

, Volume 62, Issue 2, pp 71–77 | Cite as

Antioxidant and Antimutagenic Activities of Randia echinocarpa Fruit

  • María Elena Santos-Cervantes
  • María Emilia Ibarra-Zazueta
  • Guadalupe Loarca-Piña
  • Octavio Paredes-López
  • Francisco Delgado-VargasEmail author


We report for the first time the antioxidant and antimutagenic activities of fractions from Randia echinocarpa fruit, which is a Rubiaceae plant native to Sinaloa, Mexico. This fruit has been traditionally used in the prevention or treatment of cancer, among other diseases. The pulp of the fruit was sequentially extracted with solvents of different polarity (i.e. hexane, chloroform, methanol and water). A high extraction yield was obtained with methanol (72.17% d.w.). The aqueous extract showed the highest content of phenolics (2.27 mg/g as ferulic acid equivalents) and the highest antioxidant activity based on the β-carotene bleaching method (486.15). The commercial antioxidant BHT was used as control (835.05). Antimutagenic activity of the aqueous extract (0–500 μg/tube) was evaluated using the Salmonella microsuspension assay (YG1024 strain) and 1-NP as the mutagen (50 and 100 ng/tube). The aqueous extract was neither toxic nor mutagenic and the percentage of inhibition on 1-NP mutagenicity was 32 and 53% at doses of 50 and 100 ng/tube, respectively. The results of the double incubation assay suggest that the extract inhibited the mutagenicity of 1-NP by a combination of desmutagenic and bioantimutagenic effects.


Antimutagenic activity Antioxidant activity Desmutagen and bioantimutagen Randia echinocarpa Salmonella typhimurium Total phenolics 



aqueous extract from pulp of Randia echinocarpa fruit




antioxidant activity coefficient


butylated hydroxytoluene


butylated hydroxyanisole



We acknowledge the help of the following institutions/ persons: Consejo Nacional de Ciencia y Tecnología, CECYT, SEP and UAS for the financial support; Dr. Rito Vega-Aviña, Agronomy Faculty, UAS, Culiacan, Sinaloa, Mexico, for his help in the taxonomical identification of the plant material, and Jose A. Lopez-Valenzuela, Faculty of Chemical and Biological Sciences, UAS, Culiacan, Sinaloa, Mexico, for his technical assistance.


  1. 1.
    Bye R, Linares E, Mata R, Albor C, Castañeda PC, Delgado G (1991) Ethnobotanical and phytochemical investigation of Randia echinocarpa (Rubiaceae). Anales Inst Biol Univ Nac Aut México, Ser Bot 62:87–106Google Scholar
  2. 2.
    Pérez S, Pérez RM, Pérez-González C, Vargas R (1993) Cicatrizing activity of Randia echinocarpa in gastric ulcers. Phyton 54:157–162Google Scholar
  3. 3.
    Vargas-Solís R, Pérez-Gutiérrez RM (2002) Diuretic and urolithiatic activities of the aqueous extract of the fruit of Randia echinocarpa on rats. J Ethnopharmacol 83:145–147CrossRefGoogle Scholar
  4. 4.
    Benigni R (2005) Structure–activity relationship studies of chemical mutagens and carcinogens: mechanistic investigations and prediction approaches. Chem Rev 105:1767–1800CrossRefGoogle Scholar
  5. 5.
    Doll R (1992) The lessons of life: keynote address to the nutrition and cancer conference. Cancer Res 52:2024s–2029sGoogle Scholar
  6. 6.
    Ames BN, Durston WE, Yamasaki E, Lee FD (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Nat Acad Sci USA 70:2281–2285CrossRefGoogle Scholar
  7. 7.
    Johnson IT (2003) Antioxidants and antitumour properties. In: Pokormy J, Yanishlieva N, Gordon M (eds) Antioxidants in food. CRC, Boca Raton FL, USA, pp 100–123Google Scholar
  8. 8.
    Knasmüller S, Majer BJ, Buchmann C (2004) Identifying antimutagenic constituents of food. In: Remacle C, Reusens B (eds) Functional foods, ageing and degenerative disease. CRC, Boca Raton FL, USA, pp 581–614Google Scholar
  9. 9.
    Shankel DM, Kuo S, Haines C, Mitscher LA (1993) Extracellular interception of mutagens. In: Bronzetti G, Hayatsu H, De Flora S, Waters MD, Shankel DM (eds) Antimutagenesis and anticarcinogenesis mechanisms III. Plenum, New York, USA, pp 65–74Google Scholar
  10. 10.
    Resende FA, Mattos de Andrade Barcala CA, Silva Faria MC, Kato FH, Cunha WR, Tavares DC (2006) Antimutagenicity of ursolic acid and oleanolic acid against doxorubicin-induced clastogenesis in Balb/c mice. Life Sci 79:1268–1273CrossRefGoogle Scholar
  11. 11.
    Suhaj M (2006) Spice antioxidants isolation and their antiradical activity: a review. J Food Comp Anal 19:531–537CrossRefGoogle Scholar
  12. 12.
    Aquino R, De Simone F, Pizza C, Conti C, Stein ML (1989) Plant Metabolites: structure and in vitro antiviral activity of quinovic acid glycosides from Uncaria tormentosa and Guettarda platypoda. J Nat Prod 52:679–685CrossRefGoogle Scholar
  13. 13.
    Chan-Blanco Y, Vaillant F, Perez AM, Reynes M, Brillouet JM, Brat P (2006) The noni fruit (Morinda citrifolia L.): a review of agricultural research, nutritional and therapeutic properties. J Food Comp Anal 19:645–654CrossRefGoogle Scholar
  14. 14.
    De Martino L, Silva Martinot JL, Franceschelli S, Leone A, Pizza C, De Feo V (2006) Proapoptotic effect of Uncaria tormentosa extracts. J Ethnopharmacol 107:91–94CrossRefGoogle Scholar
  15. 15.
    Pawlus AD, Su B-N, Keller WJ, Kinghorn AD (2005) An anthraquinone with potent quinone reductase-inducing activity and other constituents of the fruits of Morinda citrifolia (noni). J Nat Prod 68:1720–1722CrossRefGoogle Scholar
  16. 16.
    Samoylenko V, Zhao J, Dunbar DC, Khan IA, Rushing JW, Muhammad I (2006) New constituents from noni (Morinda citrifolia) fruit juice. J Agric Food Chem 54:6398–6402CrossRefGoogle Scholar
  17. 17.
    Su B-N, Pawlus AD, Jung H-A, Keller WJ, McLaughlin JL, Kinghorn AD (2005) Chemical constituents of the fruits of Morinda citrifolia (noni) and their antioxidant activity. J Nat Prod 68:592–595CrossRefGoogle Scholar
  18. 18.
    AOAC (1995) Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Washington, DC, USAGoogle Scholar
  19. 19.
    von Gadow A, Joubert E, Hansmann CF (1997) Comparison of the antioxidant activity of aspalathin with that of other plant phenols of rooibos tea (Aspalathus linearis), α-tocopherol, BHT, and BHA. J Agric Food Chem 45:632–638CrossRefGoogle Scholar
  20. 20.
    Kado NY, Guiguis GN, Flessel CP, Chan RC, Chang K, Wselowski JJ (1986) Mutagenicity of fine (<2.5 mm) airborne particles: diurnal variation in community air determined by Salmonella micro preincubation procedure. Environ Mol Mutagen 8:53–66Google Scholar
  21. 21.
    Kado NY, Langley D, Eisenstadt E (1983) A simple modification of the Salmonella liquid incubation assay. Increased sensitivity for detecting mutagens in human urine. Mut Res 121:25–32CrossRefGoogle Scholar
  22. 22.
    Loarca-Piña G, Kuzmicky PA, González de Mejía E, Kado NY, Hsich DPH (1996) Antimutagenicity of ellagic acid against aflatoxin B1 in the Salmonella microsuspension assay. Mut Res 360:15–21Google Scholar
  23. 23.
    Montgomery DC (1991) Diseño y análisis de experimentos. Grupo Editorial Iberoamérica, México, DFGoogle Scholar
  24. 24.
    USDA, USDA Nutrient Database for Standard Reference, Release 15. 2002, US Department of Agriculture, Agricultural Research ServiceGoogle Scholar
  25. 25.
    Tsao R, Deng Z (2004) Separation procedures for naturally occurring antioxidant phytochemicals. J Chromatogr B 812:85–99CrossRefGoogle Scholar
  26. 26.
    Decker EA (2002) Antioxidant mechanisms. In: Akoh CC, Min DB (eds) Food lipids: chemistry, nutrition, and biotechnology. Marcel Dekker, New York, USA, pp 517–542Google Scholar
  27. 27.
    Shahidi F, Naczk M (2003) Phenolics in food and nutraceuticals. CRC, Boca Raton FL, USA, pp 131–240Google Scholar
  28. 28.
    Kähkönen MP, Hopia AI, Vuorela HJ, Rauha J-P, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47:3954–3962CrossRefGoogle Scholar
  29. 29.
    Tsao R, Yang R, Xie S, Sockovie E, Khanizadeh S (2005) Which polyphenolic compounds contribute to the total antioxidant activities of apple? J Agric Food Chem 53:4989–4995CrossRefGoogle Scholar
  30. 30.
    Abdille MH, Singh RP, Jayaprakasha GK, Jena BS (2005) Antioxidant activity of the extracts from Dillenia indica fruits. Food Chem 90:891–896CrossRefGoogle Scholar
  31. 31.
    Gorinstein S, Cvirkrová M, Machackova I, Haruenkit R, Park Y-S, Jung S-T, Yamamoto K, Martinez-Ayala AL, Katrich E, Trakhtenberg S (2004) Characterization of antioxidant compounds in Jaffa sweeties and white grapefruits. Food Chem 84:503–510CrossRefGoogle Scholar
  32. 32.
    Mokbel MS, Hashinaga F (2006) Evaluation of the antioxidant activity of extracts from buntan (Citrus grandis Osbeck) fruit tissues. Food Chem 94:529–534CrossRefGoogle Scholar
  33. 33.
    Ordoñez AAL, Gomez JD, Vattuone MA, Isla MI (2006) Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem 97:452–458CrossRefGoogle Scholar
  34. 34.
    Purohit V, Basu AK (2000) Mutagenicity of nitroaromatic compounds. Chem Res Toxicol 13:673–692CrossRefGoogle Scholar
  35. 35.
    Watanabe M, Sofuni T, Nohmi T (1992) Involvement of Cys69 residue in the catalytic mechanism of N-hydroxyarylamine O-acetyltransferase of Salmonella typhimurium. J Biol Chem 267:8429–8436Google Scholar
  36. 36.
    González de Mejía E, Castaño-Tostado E, Loarca-Piña G (1999) Antimutagenic effects of natural phenolic compounds in beans. Mut Res 441:1–9Google Scholar
  37. 37.
    González de Mejía E, Loarca-Piña G, Ramos-Gómez M (1997) Antimutagenicity of xanthophylls present in aztec marigold (Tagetes erecta) against 1-NP. Mut Res 189:219–226Google Scholar
  38. 38.
    Jiménez-Martínez C, Loarca-Piña G, Dávila-Ortíz G (2003) Antimutagenic activity of phenolic compounds, oligosaccharides and quinolizidinic alkaloids from Lupinus campestris seeds. Food Addit Contam 20:940–948CrossRefGoogle Scholar
  39. 39.
    De Flora S, Ramel C (1988) Mechanisms of inhibitors of mutagenesis and carcinogenesis. Classification and overview. Mut Res 202:285–306Google Scholar
  40. 40.
    Kada T, Inoue T, Ohta T, Shirasu Y (1986) Antimutagens and their mode of action. In: Shankel DM, Hartman PE, Kada T, Hollanender A (eds) Antimutagenesis and anticarcinogenesis mechanisms. Plenum, New York, pp 181–198Google Scholar
  41. 41.
    Wang M, Tsao R, Zhang S, Dong Z, Yang R, Gong J, Pei Y (2006) Antioxidant activity, mutagenicity/anti-mutagenicity, and clastogenicity/anti-clastogenicity of lutein from marigold flowers. Food Chem Toxicol 44:1522–1529CrossRefGoogle Scholar
  42. 42.
    Dashwood R, Guo D (1993) Antimutagenic potency of chlorophyllin in the Salmonella assay and its correlation with binding constants of mutagen–inhibitor complexes. Environ Mol Mutagen 22:164–171CrossRefGoogle Scholar
  43. 43.
    Ferruzzi MG, Böhm V, Cortney PD, Schwartz SJ (2002) Antioxidant and antimutagenic activity of dietary chlorophyll derivatives determined by radical scavenging and bacterial reverse mutagenesis assays. J Food Sci 67:2589–2595CrossRefGoogle Scholar
  44. 44.
    Pedreschi R, Cisneros-Zevallos L (2006) Antimutagenic and antioxidant properties of phenolic fractions from Andean purple corn (Zea mays L.). J Agric Food Chem 54:4557–4567CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • María Elena Santos-Cervantes
    • 1
  • María Emilia Ibarra-Zazueta
    • 1
  • Guadalupe Loarca-Piña
    • 3
  • Octavio Paredes-López
    • 2
  • Francisco Delgado-Vargas
    • 1
    Email author
  1. 1.Maestría en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico BiológicasUniversidad Autónoma de SinaloaCuliacán Sin.Mexico
  2. 2.Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad IrapuatoIrapuato Gto.Mexico
  3. 3.PROPAC (Programa de Posgrado en Alimentos del Centro de la República), Research and Graduated Studies in Food Science, School of ChemistryUniversidad Autónoma de QuerétaroQuerétaro Qro.México

Personalised recommendations