Plant Foods for Human Nutrition

, Volume 62, Issue 1, pp 19–24 | Cite as

Antihyperlipidemic Effect of Aronia melanocarpa Fruit Juice in Rats Fed a High-Cholesterol Diet

General Paper


Aronia melanocrpa fruit juice (AMFJ) used in our experiment was very rich in phenolic substances (709.3 mg gallic acid equivalents/100 ml juice). Anthocyanins (106.8 mg cyanidin-3-glucoside equivalents/100 ml juice) were the main flavonoid group. The aim of this study was to assess the influence of AMFJ on plasma lipids and lipoprotein profile, and histopathology of liver and aorta in rats with dietary-induced hyperlipidemia. AMFJ was administered by gavage for 30 days at doses of 5, 10 and 20 ml/kg body weight to rats fed a standard diet (SD) or a 4% cholesterol-containing diet (4% ChD). The 4% ChD caused a significant elevation of plasma total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG). AMFJ did not significantly influence plasma lipids in rats fed the SD and significantly hindered the elevation of plasma TC, LDL-C and TG in rats fed the 4% ChD. High-density lipoprotein cholesterol (HDL-C) levels were not significantly influenced either by the 4% ChD or by AMFJ. Neither the cholesterol feeding, nor AMFJ treatment induced any histopathological changes in rat liver and aorta. In conclusion, AMFJ showed an antihyperlipidemic effect in rats with hyperlipidemia and could be valuable in reducing this factor of cardiovascular risk.

Key words

Anthocyanins Aronia melanocrpa fruit juice Flavonoids High-cholesterol diet Plasma lipids Total phenolics 



Aronia melanocarpa fruit juice


cholesterol-containing diet


high-density lipoprotein cholesterol


low-density lipoprotein cholesterol


standard diet


total cholesterol





We thank the Food Composition Department, National Center of Public Health Protection, Sofia, Bulgaria, for determining the contents of phenolic substances in AMFJ.


  1. 1.
    Oszmianski J, Wojdylo A (2005) Aronia melanocarpa phenolics and their antioxidant activity. Eur Food Res Technol 221: 809–813.CrossRefGoogle Scholar
  2. 2.
    Oszmiański J, Sapis JC (1988) Anthocyanins in fruits of Aronia melanocarpa (Chokeberry). J Food Sci 53: 1241–1242.CrossRefGoogle Scholar
  3. 3.
    Galvano F, La Fauci L, Lazzarino G, Foqliano V, Ritieni A, Ciappellano S, Battistini NC, Tavazzi B, Galvano G (2004) Cyanidin: metabolism and biological properties. J Nutr Biochem 15: 2–11.CrossRefGoogle Scholar
  4. 4.
    Wawer I, Wolniak M, Paradowska K (2006) Solid state NMR study of dietary fiber powders from aronia, bilberry, black currant and apple. Solid State Nucl Magn Reson 30: 106–113.CrossRefGoogle Scholar
  5. 5.
    Espin JC, Doler-Rivas C, Wichers HJ, Garcia-Viquera C (2000) Anthocyanin-based natural colorants: a new source of antiradical activity for foodstuff. J Agric Food Chem 48: 1588–1592.CrossRefGoogle Scholar
  6. 6.
    McKay SA (2002) Demand increasing for Aronia and Elderberry in North America. Berry Notes 14: 6–7.Google Scholar
  7. 7.
    Bermúdes-Sato MJ, Thoms-Barbern FA (2004) Evaluation of commercial red fruit juice concentrates as ingredients for antioxidant functional juices. Eur Food Res Technol 219: 133–141.Google Scholar
  8. 8.
    Lampe JW (1999) Health effects of vegetables and fruits: assessing mechanisms of action in human experimental studies. Am J Clin Nutr 70: 475S-490S.Google Scholar
  9. 9.
    Paganga G, Miller N, Rice-Evans CA (1999) The polyphenolic content of fruits and vegetables and their antioxidant activities. What does a serving constitute? Free Radic Res 30: 153–162.CrossRefGoogle Scholar
  10. 10.
    Hertog MGL, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S, Pekkarinen M, Simic BS, Toshima H, Fesken E, Hollman PCH, Katan MB (1995) Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med 155: 381–386.CrossRefGoogle Scholar
  11. 11.
    Keli SO, Hertog MG, Feskins EJ, Kromhout D (1996) Dietary flavonoids, antioxidant vitamins, and incidence of stroke: the Zutphen study. Arch Intern Med 156: 637–642.CrossRefGoogle Scholar
  12. 12.
    Aviram M, Kaplan M, Rosenblat M, Fuhrman B (2005) Dietary antioxidants and paraoxonases against LDL oxidation and atherosclerosis development. Hndb Exp Pharmacol 170: 263–300.CrossRefGoogle Scholar
  13. 13.
    Scalbert A, Manach C, Morand C, Remesy C, Jimenez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45: 287–306.CrossRefGoogle Scholar
  14. 14.
    Adebawo O, Salau B, Ezima E, Oyefuqa O, Ajani E, Idowu G, Famodu A, Osilesi O (2006) Fruits and vegetables moderate lipid cardiovascular risk factor in hypertensive patients. Lipids Health Dis 5: 14.CrossRefGoogle Scholar
  15. 15.
    Bok SH, Park SY, Park YB, Lee MK, Jeon SM, Jeong TS, Choi MS (2002) Quercetin dihydrate and gallate supplements lower plasma and hepatic lipids and change activities of hepatic antioxidant enzymes in high cholesterol-fed rats. Int J Vitam Nutr Res 72: 161–169.CrossRefGoogle Scholar
  16. 16.
    Raedersdorf DG, Schlachter MF, Elste V, Weber P (2003) Effect of EGCG on lipid absorption and plasma lipid levels in rats. J Nutr Biochem 14: 326–332.CrossRefGoogle Scholar
  17. 17.
    Kono S, Shinchi K, Yakabayashi K, Honjo S, Todoraki I, Sakurai Y, Imanishi K, Nishikawa H, Ogawa S, Katsurada M (1996) Relation of green tea consumption to serum lipids and lipoproteins in Japanese men. J Epidemiol 6: 128–133.Google Scholar
  18. 18.
    Arai Y, Watanabe S, Kimira M, Shimoi K, Mochziki R, Kinae N (2000) Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 130: 2243–2250.Google Scholar
  19. 19.
    Sousa RV, Santos PCF, Bambirra EA, Vieira EC, Alvares-Leite JI (2002) Nutritional characteristics of Amazonian fish fat (Colossoma macropomum) and its effect on lipid metabolism of rats fed hypercholesterolemic diets. Ciênc Tecnol Aliment 22: 88–93.CrossRefGoogle Scholar
  20. 20.
    Ahmad-Raus RR, Abdul-Latif ES, Mohammad JJ (2001) Lowering of lipid composition in aorta of guinea pigs by Curcuma domestica. BMC Complement Altern Med 1: 6.CrossRefGoogle Scholar
  21. 21.
    Rong JX, Shen L, Chang YH, Richters A, Hodis HN, Sevanian A (1999) Cholesterol oxidation products induce vascular foam cell lesion formation in hypercholesterolemic New Zealand white rabbits. Arterioscler Thromb Vasc Biol 19: 2179–2188.Google Scholar
  22. 22.
    Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am J Emol Viticult 16: 144–158.Google Scholar
  23. 23.
    Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555–559.CrossRefGoogle Scholar
  24. 24.
    Guisti MM, Rodrigues-Saona LE, Wrolstad RE (1999) Specrtral characteristics, molar absorptivity and color of pelargonidin derivatives. J Agric Food Chem 47: 4631–4637.CrossRefGoogle Scholar
  25. 25.
    Hertog MGL, Hollman PCH, Vanema DP (1992) Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. J Agric Food Chem 40: 1591–1598.CrossRefGoogle Scholar
  26. 26.
    Gorinstein S, Leontowicz H, Leontowicz M, Krzeminski R, Gralak M, Delgado-Licon E, Ayala ALM, Katrich E, Trakhtenberg S (2005) Changes in plasma lipid and antioxidant activity in rats as a result of naringin and red grapefruit supplementation. J Agric Food Chem 53: 3223–3228.CrossRefGoogle Scholar
  27. 27.
    Zeller W, Weber H, Panoussis B, Bürge T, Bergmann R (1999) Refinement of blood sampling from the sublingual vein of rats. Lab Anim 32: 369–376.Google Scholar
  28. 28.
    Friedwald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18: 499–502.Google Scholar
  29. 29.
    Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M (1999) Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47: 3954–3962.CrossRefGoogle Scholar
  30. 30.
    Wu X, Gu L, Prior RL, McKay S (2004) Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J Agric Food Chem 52: 7846–7856.Google Scholar
  31. 31.
    Kähkönen MP, Hopia AI, Heinonen M (2001) Berry phenolics and their antioxidant activity. J Agic Food Chem 49: 4076–4082.CrossRefGoogle Scholar
  32. 32.
    Hakkinen SH, Karenlampi SO, Heinonen IM, Mykkanen HM, Torronen AR (1999) Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 47: 2274–2279.CrossRefGoogle Scholar
  33. 33.
    Rayner HC, Ross-Gilbertson VL, Walls J (1990) The role of lipids in the pathogenesis of glomerulosclerosis in the rat following subtotal nephrectomy. Eur J Clin Nutr 20: 97–104.Google Scholar
  34. 34.
    Raij L, Hayakawa H, Coffee K, Guerra (1997) Effect of doxazosin on endothelial dysfunction in hypercholesterolemic/antioxidant deficient rats. Am J Hypert 10: 1257–1262.CrossRefGoogle Scholar
  35. 35.
    Deepa PR, Varalakshmi P (2006) Favourable modulation of the inflammatory changes in hypercholesterolemic atherogenesis by a low-molecular-weight heparin derivative. Int J Cardiol 106: 338–347.CrossRefGoogle Scholar
  36. 36.
    Kurowska EM, Borradaile NM, Spence JD, Carrol KK (2000) Hypocholesterolemic effect of citrus juices in rabbits. Nutr Res 20: 121–129.CrossRefGoogle Scholar
  37. 37.
    Krečman V, Škottov N, Walterov D, Ulrichov J, Šimnek V (1998) Silymarin inhibits the development of diet-induced hypercholesterolemia in rats. Planta Med 64: 138–142.CrossRefGoogle Scholar
  38. 38.
    Yokozawa T, Nakagawa T, Kitani K (2002) Antioxidant activity of green tea polyphenol in cholesterol-fed rats. J Agric Food Chem 50: 3549–3552.CrossRefGoogle Scholar
  39. 39.
    Cignarella A, Nastasi M, Cavalli E, Puglisi L (1996) Novel lipid lowering properties of Vaccinium myrtillus L. leaves, a traditional antidiabetic treatment, in several models of rat dyslipidemia: a comparison with ciprofibrate. Thromb Res 84: 311–322.CrossRefGoogle Scholar
  40. 40.
    Ikeda I, Imasato Y, Sasaki E, Nakayama M, Nagao H, Takeo T, Yayabe F, Sugano M (1992) Tea catechins decrease micellar solubility and intestinal absorption of cholesterol in rats. Biochem Biophys Acta 1127: 141–147.Google Scholar
  41. 41.
    Ohishi K, Sawada H, Yoshida Y, Yokoi W, Hatano H, Aiyama R, Watanabe T, Yokokura T (2003) Inhibitory effects of N-(3,5-dimethoxy-4-n-octyloxycinnamoyl)-N’-(3,4-dimethylphenyl)piperazine (YIC-C8-434), an acyl-CoA:cholesterol O-acyltransferase inhibitor, on cholesterol esterification in the intestine and liver. Biol Pharm Bull 26: 1125–1128.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

    • 1
    Email author
    • 2
    • 3
    • 4
    • 1
    • 1
  1. 1.Department of Preclinical and Clinical Pharmacology and BiochemistryMedical UniversityVarnaBulgaria
  2. 2.VivariumMedical UniversityVarnaBulgaria
  3. 3.Department of Clinical LaboratoryMedical UniversityVarnaBulgaria
  4. 4.Department of General and Clinical PathologyMedical UniversityVarnaBulgaria

Personalised recommendations