Skip to main content

A Review on Pharmacological Activities and Utilization Technologies of Pumpkin

Abstract.

Dietary plants and herbal preparations have been traditionally used as medicine in developing countries and obtained a resurgence of use in the United States and Europe. Research carried out in last few decades has validated several such claims of use of traditional medicine plants. Popularity of pumpkin in various systems of traditional medicine for several ailments (antidiabetic, antihypertensive, antitumor, immunomodulation, antibacterial, antihypercholesterolemia, intestinal antiparasitia, antiinflammation, antalgic) focused the investigators’ attention on this plant. Considerable evidence from several epidemiological studies concerning bioactivities leads have stimulated a number of animal model, cell culture studies and clinical trials designed to test this pharmacological actions. In addition, it was found that technologies such as germination and fermentation could reduce antinutritional materials and affect the pharmacological activities of pumpkin. This review will focus on the main medicinal properties and technologies of pumpkin, and point out areas for future research to further elucidate mechanisms whereby this compound may reduce disease risk.

This is a preview of subscription content, access via your institution.

Fig. 1.

References

  1. Ang-Lee MK, Moss J, Yuan CS (2001) Herbal medicines and perioperative care. JAMA 286: 208–216.

    CAS  Article  Google Scholar 

  2. Marcus DM, Grollman AP (2002) Botanical medicines: the need for new regulations. N Engl J Med 347: 2073–2076.

    Article  Google Scholar 

  3. De Smet PA (2002) Herbal remedies. N Engl J Med 347: 2046–2056.

    Article  Google Scholar 

  4. Grover JK, Yadav SP (2004) Pharmacological actions and potential uses of Momordica charantia: a review. J Ethnopharmacol 93: 123–132.

    CAS  Article  Google Scholar 

  5. Whitaker TW, Davis GN (1962) Cucurbits. New York: Interscience Publ. Inc.

    Google Scholar 

  6. Robinson RW, Decker-Walters DS (1997) Cucurbits. New York: CAB International.

    Google Scholar 

  7. Taylor MJ, Brant J (2002) Trends in world cucurbit production, 1991 to 2001. In: Maynard DN (ed), Cucurbitaceae. Alexandria, VA: ASHS Press, pp 373–379.

    Google Scholar 

  8. Paris HS (1989) Cucurbitapepo (Cucurbitaceae). Econ Bot 43: 423–443.

    Google Scholar 

  9. Decker-Walters DS, Walters TW (2000) Squash. In: Kipel KF, Ornelas KC (eds), The Cambridge World History of Food. Cambridge, England: Cambridge Univ. Press, pp 335–351.

    Google Scholar 

  10. Brent Loy J (2004) Morpho-Physiological Aspects of Productivity and Quality in Squash and Pumpkins (Cucurbita spp.). Crit Rev Plant Sci 23(4): 337–363.

    Article  Google Scholar 

  11. Jacks TJ, Hensarling TP, Yatsu LY (1972) Cucurbit seeds: I. Characterizations and Uses of oils and Proteins. A Rev Econ Bot 26: 135–141.

    CAS  Google Scholar 

  12. Lazos ES (1986) Nutritional, fatty acid, and oil characteristics of pumpkin and melon seeds. J Food Sci 4: 83–87.

    Google Scholar 

  13. Winkler J (2000) The origin and breeding of hull-less seeded Styrian oil-pumpkin varieties in Austria. Cucurbit Genetics Coop Rpt 23: 101–104.

    Google Scholar 

  14. Robinson RG (1975) Amino acid composition of sunflower and pumpkin seeds. Agron J 61: 541–544.

    Article  Google Scholar 

  15. Teppner H (2000) Cucurbita pepo-History and thin coated seeds. Cucurbit Genetic Coop Rpt 23: 126–127.

    Google Scholar 

  16. Dreher ML, Weber CW, Bemis WP, Berry JW (1980) Cucurbit seed coat composition. J Agr Food Chem 28: 364–366.

    CAS  Article  Google Scholar 

  17. Seo JS, Burri BJ, Quan ZJ, Neidlinger TR (2005) Extraction and chromatography of carotenoids from pumpkin. J Chromatogr A 1073(1–2): 371–375.

    CAS  Article  Google Scholar 

  18. Akwaowo EU, Ndon BA, Etuk EU (2000) Minerals and antinutrients in fluted pumpkin (Telfairia occidentalis Hook f.). Food Chemistry 70(2): 235–240.

    CAS  Article  Google Scholar 

  19. Popovic M (1971). On growing squash and pumpkin (Cucurbita sp.) in Yugoslavia. Savremena Poljoprivreda 11–12: 59–71.

    Google Scholar 

  20. Jia W, Gao W, Tang L (2003) Antidiabetic herbal drugs officially approved in China. Phytother Res 17(10): 1127–1134.

    Article  Google Scholar 

  21. Adolfo AC, Michael H (2005) Mexican plants with hypoglycaemic effect used in the treatment of diabetes. J Ethnopharmacol 99: 325–348.

    Article  Google Scholar 

  22. Buchbauer G, Boucek B, Nikiforov A (1998) On the aroma of Austrian pumpkin seed oil: correlation of analytical data with olfactoric characteristics. Ernahrung/Nutrition 22(6): 246–249.

    CAS  Google Scholar 

  23. Kuhlmann H, Koetter U, Theurer C (1999) Sterol contents in medicinal pumpkin (Cucurbita pepo convar. citrullinina var. styriaca) depending on genotype and location. Acta Horticulturae 492: 175–178.

    CAS  Google Scholar 

  24. Matsui T, Guth H, Grosch W (1998) A comparative study of potent odorants in peanut, hazelnut, and pumpkin seed oils on the basis of aroma extract dilution analysis (AEDA) and gas chromatography-olfactometry of headspace samples (GCOH). Lipid–Fett 100(2): 51–56.

    CAS  Article  Google Scholar 

  25. Appendino G, Jakupovic J, Belloro E, Marchesini A (1999) Multiflorane triterpenoid esters from pumpkin. An unexpected extrafolic source of PABA. Phytochemistry 51: 1021–1026.

    CAS  Article  Google Scholar 

  26. Murkovic M, Mulleder U, Neunteufl H (2002) Carotenoid Content in Different Varieties of Pumpkins. J Food Composition Anal 15: 633–638.

    CAS  Article  Google Scholar 

  27. Gonzalez E, Montenegro MA, Nazareno MA, Lopez de Mishima BA (2001) Carotenoid composition and vitamin A value of an Argentinian squash (Cucurbita moschata). Arch Latinoam Nutr 51(4): 395–399.

    CAS  Google Scholar 

  28. Rodriguez-Amaya DB (1999) Latin American food sources of carotenoids. Arch Latinoam Nutr 49(3 Suppl 1): 74S–84S.

    CAS  Google Scholar 

  29. Arima HK, Rodriguez-Amaya DB (1990) Carotenoid composition and vitamin A value of a squash and a pumpkin from northeastern Brazil. Arch Latinoam Nutr 40(2): 284–292.

    CAS  Google Scholar 

  30. Zhang H (2003) Determination of γ-amino-butyric acid and amino acids in pumpkin. Food Res Dev 24(3): 108–109.

    CAS  Google Scholar 

  31. Akwaowo EU, Ndon BA, Etuk EU (2000) Minerals and antinutrients in fluted pumpkin(Telfairia occidentalis Hook f.). Food Chem 70: 235–240.

    CAS  Article  Google Scholar 

  32. Achinewhu SC, Isichei MO (1990) The nutritional evaluation of fermented fluted pumpkin seeds (Telfairia occidentalis Hook). Discov Innov 2: 62–65.

    Google Scholar 

  33. Nwokolo E, Sim JS (1987) Nutritional assessment of defatted oil meals of melon (Colocynthis citrullus) and fluted pumpkin (Telfairia occidentalis) by chick assay. J Sci Food Agric 38: 237–246.

    CAS  Article  Google Scholar 

  34. Koike K, Li W, Liu L, Hata E, Nikaido T (2005) New phenolic glycosides from the seeds of Cucurbita moschata. Chem Pharm Bull 53(2): 225–228.

    CAS  Article  Google Scholar 

  35. Bang MH, Han JT, Kim HY, Park YD, Park CH, Lee KR, Baek NI (2002) 13-Hydroxy-9Z, 11E, 15E-octadecatrienoic acid from the leaves of Cucurbita moschata. Arch Pharm Res 25(4): 438–440.

    CAS  Article  Google Scholar 

  36. Xiang D, Han FY, Liang P (2004) Extraction of pumpkin polysaccharide with sodium hydroxide. Sci Technol Food Ind 11: 120–122.

    Google Scholar 

  37. Li QH, Fu CL (2005) Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein. Food Chem 92: 701–707.

    Article  CAS  Google Scholar 

  38. Jun HI, Lee CH, Song GS, Kim YS (2006) Characterization of the pectic polysaccharides from pumpkin peel. Food Sci Tech 39(5): 554–561.

    CAS  Google Scholar 

  39. Zhang YJ, Yao HY (2002) Revealing the effective ingredient in pumpkin for reducing blood sugar. J Chin Cereals and Oils Assoc 17(4): 59–62.

    Google Scholar 

  40. Zhang YJ, Yao HY (2002) Composition analysis of pumpkin polysaccharide and its glucatonic effect. J Wuxi Univ Light Ind 21(2): 173–175.

    CAS  Google Scholar 

  41. Xiong XM (2000) Study on extraction and separation of effective composition of pumpkin polysaccharide and its glucatonic effect. Chin Tradit Patent Med 22(8): 563–565.

    Google Scholar 

  42. Cai TY, Li QH, Yan H, Li N (2003) Study on the hypoglycemic action of pumpkin seed protein. J Chin Inst Food Sci Technol 3(1): 7–11.

    Google Scholar 

  43. Zhang Y, Yao H (2002) Study on effect of hypoglycemia of different type pumpkin. J Chin Food Sci 23: 118–120.

    Google Scholar 

  44. Ng TB, Parkash A, Tso WW (2002) Purification and characterization of moschins, arginine–glutamate-rich proteins with translation-inhibiting activity from brown pumpkin (Cucurbita moschata) seeds. Protein Expr Purif 26: 9–13.

    CAS  Article  Google Scholar 

  45. Cheong NE, Choi YO, Kim WY, Bae IS, Cho MJ, Hwang I, Kim JW, Lee SY (1997) Purification and characterization of an antifungal PR-5 protein from pumpkin leaves. Mol Cells 7(2): 214–219.

    CAS  Google Scholar 

  46. Vassiliou AG, Neumann GM, Condron R, Polya GM (1998) Purification and mass spectrometry-assisted sequencing of basic antifungal proteins from seeds of pumpkin (Cucurbita maxima). Plant Sci 134: 141–162.

    CAS  Article  Google Scholar 

  47. Wang HX, Ng TB (2003) Isolation of cucurmoschin, a novel antifungal peptide abundant in arginine, glutamate and glycine residues from black pumpkin seeds. Peptides 24: 969–972.

    CAS  Article  Google Scholar 

  48. Matora AV, Korshunova VE, Shkodina OG, Zhemerichkin DA, Ptitchkina NM, Morris ER (1995) The application of bacterial enzymes for extraction of pectin from pumpkin and sugar beet. Food Hydrocolloids 9(1): 43–46.

    CAS  Article  Google Scholar 

  49. Zhemerichkin DA, Ptitchkina NM (1995) The composition and properties of pumpkin and sugar beet pectins. Food Hydrocolloids 9(2): 147–149.

    CAS  Article  Google Scholar 

  50. Shkodina OG, Zeltser OA, Selivanov NY, Ignatov VV (1998) Enzymic extraction of pectin preparations from pumpkin. Food Hydrocolloids 12(3): 313–316.

    Article  Google Scholar 

  51. Evageliou V, Ptitchkina NM, Morris ER (2005) Solution viscosity and structural modification of pumpkin biopectin. Food Hydrocolloids 19(6): 1032–1036.

    CAS  Article  Google Scholar 

  52. Hurren D (1999) Supercritical fluid extraction with CO2. Filtr 36: 25–27.

    CAS  Google Scholar 

  53. Yu WL, Zhao YP, Chen JJ, Shu B (2004) Comparison of two kinds of pumpkin seed oils obtained by supercritical CO2 extraction. Eur J Lipid Sci Technol 106(6): 355–358.

    CAS  Article  Google Scholar 

  54. Giami SY(2004) Effect of fermentation on the seed proteins, nitrogenous constituents, antinutrients and nutritional quality of fluted pumpkin (Telfairia occidentalis Hook). Food Chem 88: 397–404.

    CAS  Article  Google Scholar 

  55. Achinewhu SC (1986) Some biochemical and nutritional changes during the fermentation of fluted pumpkin (Telfairia occidentalis). Plant Foods for Human Nutr 36: 97–106.

    CAS  Article  Google Scholar 

  56. Onimawo IA, Nmerole EC, Idoko PI, Akubor PI (2003) Effects of fermentation on nutrient content and some functional properties of pumpkin seed (Telfair occidentalis). Plant Foods for Human Nutr 58: 1–9.

    Google Scholar 

  57. Giami SY, Bekebain DA (1992) Proximate composition and functional properties of raw and processed full-fat fluted pumpkin (Telfairia occidentalis) seed flour. J Sci Food Agri 59(3): 321–325.

    CAS  Article  Google Scholar 

  58. Odoemena CS (1991) Effect of sprouting on carbohydrate content of fluted pumpkin seed. Food Chem 41(1): 107–111.

    CAS  Article  Google Scholar 

  59. Mansour EH, Dworschak E, Lugasi A, Barna E, Gergely A (1993) Nutritive value of pumpkin (Cucurbita pepo Kakai 35) seed products. J Sci Food Agri 61(1): 73–78.

    CAS  Article  Google Scholar 

  60. Lee GH, Lee BJ, Oh MJ (2001) Chemical compositions of pumpkin seed sprouts. Seoul, Korea: 11th World Congress of Food Science, pp 22–27.

    Google Scholar 

  61. Splittstoesser WE (1969) Arginine metabolism by pumpkin seedlings (Cucurbita moschata): separation of plant extracts by ion exchange resins. Plant Cell Physio 1: 87–94.

    Google Scholar 

  62. Ikuko H, Keishiro W, Hiroshi M (1976) Pumpkin seed globulin II, Alterations during germination. Plant Cell Physiol 17: 815–823.

    Google Scholar 

  63. Giami SY, Barber LI (2004) Utilization of protein concentrates from ungerminated and germinated fluted pumpkin (Telfairia occidentalis Hook) seeds in cookie formulations. J Sci Food Agric 84: 1901–1907.

    CAS  Article  Google Scholar 

  64. Nakamura Y, Suganuma E, Kuyama N, Sato K, Ohtsuki K (1998) Comparative bio-antimutagenicity of common vegetables and traditional vegetables in Kyoto. Biosci Biotechnol Biochem 62(6): 1161–1165.

    CAS  Article  Google Scholar 

  65. Ito Y, Maeda S, Sugiyama T (1986) Suppression of 7, 12-dimethylbenz[a]anthracene-induced chromosome aberrations in rat bone marrow cells by vegetable juices. Mutat Res 172(1): 55–60.

    CAS  Article  Google Scholar 

  66. Ju LY, Chang D (2001) Hypoglycemic effect of pumpkin powder. J Harbin Med 21(1): 5–6.

    Google Scholar 

  67. Zhang XP, Bai XM (2004) Effect of compound pumpkin powder on diabetic mice. Chin J Mod Appl Pharmacol 21(4): 278–280.

    Google Scholar 

  68. Chen JG (2005) Effects of sugar-removed pumpkin zymptic powders in preventing and treating the increase of blood glucose in alloxan-induced diabetic mice. Chin J Clin Rehabil 9: 94–95.

    CAS  Google Scholar 

  69. Zhang ZJ (1998) Effects of superfine pumpkin powder on alloxan-induced Diabetes Mellitus rabbits. J Chin Cereals and Oils Assoc 13(3): 52–56.

    Google Scholar 

  70. Zhang YJ (2004) Study on the hypoglycemic effects and extraction and analysis of pumpkin polysaccharide. J China Jiliang Univ 15(3): 0238–0241.

    Google Scholar 

  71. Zhang YJ (2001) Study on extraction and separation of pumpkin polysaccharide and its glucatonic effect. Food Sci Techno 5: 15–16, 18.

    Google Scholar 

  72. Zuo YM (2001) Isolation, analysis and hypoglycemic activity of pumpkin polysaccharide 22(12): 56–58.

  73. Peng H (2002) Isolation and hypoglycemic effect of pumpkin polysaccharide. Chinese J Food Sci 23(8): 260–262.

    CAS  Google Scholar 

  74. Xiong XM (1998) Hypoglycemic activity of pumpkin polysaccharide in allaxan diabetic rats. J Jiangxi Coll Tradit Chin Med 10(4): 174–175.

    Google Scholar 

  75. Kong QS, Jiang Y (2002) Isolation and purification of polysaccharide from the pumpkin and studies of its decrease BACC activity. J Jining Med Coll 35(1): 29–31.

    Google Scholar 

  76. Li QH, Fu CL, Rui YK, Hu GH, Cai TY (2005) Effects of protein-bound polysaccharide isolated from pumpkin on insulin in diabetic rats. Plant Foods Human Nutr 60: 13–16.

    CAS  Article  Google Scholar 

  77. Fu CL, Tian HJ, Cai TY, Liu Y, Li QH. (In press) Some properties of an acidic protein-bound polysaccharide from the fruit of pumpkin. Food Chem.

  78. Li QH, Tian Z, Cai TY (2001) Study on the hypoglycemic action of pumpkin extract in diabetic rat. Acta Nutrmenta Sin 25(1): 34–36.

    CAS  Google Scholar 

  79. Nishimura K, Shiina R, Kashiwagi K, Igarashi K (2006) Decrease in polyamines with ageing and their ingestion from food and drink. J Biochem 139(1): 81–90.

    CAS  Article  Google Scholar 

  80. Yan MM (1997) Hypoglycemic effect of ke-kang pumpkin juice on diabetes II. Chin Public Health 13(10): 623.

    Google Scholar 

  81. Lv WF (2004) A study on the extraction and purification of pumpkin polysaccharide and the hypoglyce effect of its compound oral liquid. Prog Pharm Sci 28(11): 515–518.

    Google Scholar 

  82. Shi Y (2003) Effect of pumpkin polysaccharide granules on glycemic control in type 2 diabetes. Cent South Pharm 1(5): 275–277.

    Google Scholar 

  83. Xiong XM (2001) Evaluation on clinical effects of pumpkin polysaccharide grannules for diabetes II. Chin Tradit Patent Med 23(7): 495–497.

    Google Scholar 

  84. Chen Z, Wang X, Jie Y, Huang C, Zhang G (1994) Study on hypoglycemia and hypotension function of pumpkin powder on human. Jiangxi Chin Med 25: 50.

    Google Scholar 

  85. Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86(6): 985–990.

    CAS  Article  Google Scholar 

  86. MacGibbon DB, Mann JD (1986) Inhibition of animal and pathogenic fungal proteases by phloem exudate from pumpkin fruits (Cucurbitaceae). J Sci Food Agric 37(6): 515–522.

    Article  Google Scholar 

  87. Kong QS (2000) Studies on extraction and hypolipidemic activity of polysaccharides from pumpkin. Chin J Biochem Pharmaceu 21(3): 7–11.

    Google Scholar 

  88. Fahim AT, Abd-el Fattah AA, Agha AM, Gad MZ (1995) Effect of pumpkin-seed oil on the level of free radical scavengers induced during adjuvant-arthritis in rats. Pharmacol Res 31(1): 73–79.

    CAS  Article  Google Scholar 

  89. Zuhair HA, Abd El-Fattah AA, El-Sayed MI (2000) Pumpkin-seed oil modulates the effect of felodipine and captopril in spontaneously hypertensive rats. Pharmacol Res 41(5): 555–563.

    CAS  Article  Google Scholar 

  90. Suzuki K, Ito Y, Otani M, Suzuki S, Aoki K (2000) A study on serum carotenoid levels of people with hyperglycemia who was screened among residents living in a rural area of Hokkaido, Japan. Nippon Eiseigaku Zasshi 55(2): 481–488.

    CAS  Google Scholar 

  91. Dang C (2004) Effect of pumpkin distillable subject on lipid peroxidation and the activity of antioxidative enzyme induced by Plumbum in mouse. Chin J Clin Rehabil 8: 4378–4379.

    Google Scholar 

  92. Xu GH, et al (2000) A study of the possible antitumour effect and immunom petence of pumpkin polysaccharide. J Wuhan Prof Med Coll 28(4): 1–4.

    Google Scholar 

  93. Al-Zuhair H, Abd el-Fattah AA, Abd el Latif HA (1997) Efficacy of simvastatin and pumpkin-seed oil in the management of dietary-induced hypercholesterolemia. Pharmacol Res 35(5): 403–408

    CAS  Article  Google Scholar 

  94. Xia HC, Li F, Li Z, Zhang ZC (2003) Purification and characterization of Moschatin, a novel type I ribosome-inactivating protein from the mature seeds of pumpkin (Cucurbita moschata), and preparation of its immunotoxin against human melanoma cells. Cell Res 13(5): 369–374.

    CAS  Article  Google Scholar 

  95. Hong LH, et al (2005) Effect of pumpkin extracts on tumor growth inhibition in S180-bearing mice. Pract Prev Med 12(4): 745–747.

    Google Scholar 

  96. Xie JM, et al (2004) Induced polarization effect of pumpkin protein on B16 cell. Fujian Med Univ Acta 38(4): 394–395.

    Google Scholar 

  97. Omura H, Tmita Y, Murakami H, Nakamura Y (1974) Antitumoric potentiality of enzyme preparations of pumpkin ascorbate oxidase and shiitake mushroom polyphenol oxidase. J Fac Agric, Kyushu Univ 3: 191–200.

    Google Scholar 

  98. Edenharder R, Kurz P, John K, Burgard S, Seeger K (1994) In vitro effect of vegetable and fruit juices on the mutagenicity of 2-amino-3-methylimidazo[4,5-f]quinoline, 2-amino-3,4-dimethylimidazo[4,5-f] quinoxaline. Food Chem Toxicol 32(5): 443–459.

    CAS  Article  Google Scholar 

  99. Akerele JO (2001) Potential anti-mutagenic activities of pumpkin and bitter leaves in Benin City, Nigeria. 8th International Conference on Environmental Mutagens, Granship, Shizuoka (Japan), pp 21–26.

  100. Mahmoud LH, Basiouny SO, Dawoud HA (2002) Treatment of experimental heterophyiasis with two plant extracts, areca nut and pumpkin seed. J Egypt Soc Parasitol 32(2): 501–506, 1 p following 506.

    Google Scholar 

  101. Diaz Obregon D, Lloja Lozano L, Carbajal Zuniga V (2004) Preclinical studies of cucurbita maxima (pumpkin seeds) a traditional intestinal antiparasitic in rural urban areas. Rev Gastroenterol Peru 24(4): 323–327.

    Google Scholar 

  102. Suphiphat V, Morjaroen N, Pukboonme I, Ngunboonsri P, Lowhnoo T, Dhanamitta S (1993) The effect of pumpkin seeds snack on inhibitors and promoters of urolithiasis in Thai adolescents. J Med Assoc Thai 76(9): 487–493.

    CAS  Google Scholar 

  103. Suphakarn VS, Yarnnon C, Ngunboonsri P (1987) The effect of pumpkin seeds on oxalcrystalluria and urinary compositions of children in hyperendemic area. Am J Clin Nutr 45(1): 115–121.

    CAS  Google Scholar 

  104. Zhang X, Ouyang JZ, Zhang YS, Tayalla B, Zhou XC, Zhou SW (1994) Effect of the extracts of pumpkin seeds on the urodynamics of rabbits: an experimental study. J Tongji Med Univ 14(4): 235–238.

    CAS  Article  Google Scholar 

  105. Nkosi CZ, Opoku AR, Terblanche SE (2005) Effect of Pumpkin Seed (Cucurbita pepo)Protein Isolate on The Activity Levels of Certain Plasma Enzymes in CCl4-Induced Liver Injury in Low-Protein Fed Rats. Phytother Res 19: 341–345.

    CAS  Article  Google Scholar 

  106. Fan YJ, Ohara A, Matsuhisa T (2004) Test for urokinase-type plasminogen activator inhibitor of edible plants in vitro. Zhonghua Yu Fang Yi Xue Za Zhi 38(4): 252–256.

    CAS  Google Scholar 

  107. Wang P, et al (1999) Experimental study on pharmacological actions about analgesia, antiinflammation of Cucurbita Moschata Duch. Shizhen Med Mteria Med Res 10(8): 567.

    Google Scholar 

  108. Krishnamoorthi R, Gong YX, Richardson M (1990) A new protein inhibitor of trypsin and activated Hageman factor from pumpkin (Cucurbita maxima) seeds. FEBS Lett 273(1–2): 163–167.

    CAS  Article  Google Scholar 

  109. Dannenhoffer JM, Suhr RC, Thompson GA (2001) Phloem-specific expression of the pumpkin fruit trypsin inhibitor. Planta 212(2): 155–162.

    CAS  Article  Google Scholar 

  110. Hernandez Ramirez BD; Guerra Modernell MJ (1997) Development and evaluation of a dietetic formula made of pumpkin, rice, chicken and vegetable oils for children with diarrhea. Archivos Latinoamericanos de Nutricion 47(1): 57–61.

    CAS  Google Scholar 

  111. Oboh G (2005) Hepatoprotective property of ethanolic and aqueous extracts of fluted pumpkin (Telfairia occidentalis) leaves against garlic-induced oxidative stress. J Med Food 8(4): 560–563.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support received in the form of a research grant (Project No: 30571298) from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LI QUANHONG.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

CAILI, F., HUAN, S. & QUANHONG, L. A Review on Pharmacological Activities and Utilization Technologies of Pumpkin. Plant Foods Hum Nutr 61, 70–77 (2006). https://doi.org/10.1007/s11130-006-0016-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-006-0016-6

Key words:

  • Pharmacological activities
  • Pumpkin
  • Review
  • Technologies
  • Traditional medicine