Skip to main content
Log in

Non-linear pricing effects in conjoint analysis

  • Original Research
  • Published:
Quantitative Marketing and Economics Aims and scope Submit manuscript

Abstract

The application of conjoint analysis to new product development is challenged in studies of complex products that simultaneously examine the major drivers of a purchase decision and the composition of product components. Demands on data increase as more product features are included in an analysis, and at some point it becomes necessary to study the components separately. This paper presents evidence of a non-linear pricing effect that complicates the analysis of large conjoint studies when multiple conjoint exercises are integrated, or bridged into a single analysis. Our model is illustrated with data from the automotive industry showing that option packages are under-valued without accounting for the non-linear effects of price.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We do not claim that our results completely explain Thaler’s model, only that some aspects are consistent with his framework.

  2. We assume that the amount of unspent money is always positive.

  3. http://qa.interceptsurveys.net/Survey2320/default.aspx?RID=Test&VID=1&CID=1

  4. We tune the RWMH algorithm so that approximately 20% of the candidates are accepted.

  5. https://shop.ford.com/build/fusion/?intcmp=show-bp#/config/Config%5B%7CFord%7CFusion%7C2020%7C1%7C1.%7C......NRD.NONFLEET.SCC.%5D

  6. https://shop.ford.com/build/mustang/?intcmp=show-bp#/config/Config%5B%7CFord%7CMustang%7C2020%7C1%7C1.%7C100A.P8T.....COU.52B.MST.~YZKAA.EBST.LESS.%5D

  7. https://media.ford.com/content/fordmedia/fna/us/en/news/2018/03/15/ford-co-pilot360.html

  8. https://www.toyota.com/configurator/build/step/package/year/2021/series/corolla/model/1864/exteriorcolor/01K3/interiorcolor/FC23/packages/option8

  9. https://www.toyota.com/configurator/build/step/package/year/2021/series/corolla/model/1864/exteriorcolor/01K3/interiorcolor/FC23/packages/option9

  10. https://www.toyota.com/configurator/build/step/package/year/2020/series/highlander/model/6954/exteriorcolor/01G3/interiorcolor/LB40/packages/option18

  11. https://reurl.cc/Krmnog

  12. https://www.nissanusa.com/shopping-tools/build-price/cars/sentra/2020/xtronic-cvt/29016:BABWs:As8H6/packages/29016-P01

  13. https://www.nissanusa.com/shopping-tools/build-price/crossovers-suvs/rogue/2020/intelligent-awd/28866:BABXh:AzaC5A/packages/28866-K02

  14. https://www.nissanusa.com/shopping-tools/build-price/cars/altima/2020/fwd/28875:BABXk:Au4iMw/packages/28875-S01

  15. https://www.chevrolet.com/suvs/trailblazer/build-and-price/packages/package/ZL5

  16. https://www.chevrolet.com/cars/sonic/build-and-price/packages

  17. https://www.chevrolet.com/cars/malibu/build-and-price/packages

  18. https://www.chevrolet.com/cars/previous-year/spark/build-and-price/packages

  19. available on 01/02/2021

References

  • Allenby, G. M., Brazell, J., Howell, J. R., & Rossi, P. E. (2014). Valuation of patented product features. The Journal of Law and Economics, 57(3), 629–663.

    Article  Google Scholar 

  • Allenby, G. M., Brazell, J. D., Howell, J. R., & Rossi, P. E. (2014). Economic valuation of product features. Quantitative Marketing and Economics, 12(4), 421–456.

    Article  Google Scholar 

  • Balakrishnan, P. V., & Jacob, V. S. (1996). Genetic algorithms for product design. Management Science, 42(8), 1105–1117.

    Article  Google Scholar 

  • Brazell, J. D., Diener, C. G., Karniouchina, E., Moore, W. L., Séverin, V., & Uldry, P.-F. (2006). The no-choice option and dual response choice designs. Marketing Letters, 17(4), 255–268.

    Article  Google Scholar 

  • Camm, J. D., Cochran, J. J., Curry, D. J., & Kannan, S. (2006). Conjoint optimization: An exact branch-and-bound algorithm for the share-of-choice problem. Management Science, 52(3), 435–447.

    Article  Google Scholar 

  • Dahan, E., & Srinivasan, V. (2000). The predictive power of internet-based product concept testing using visual depiction and animation. Journal of Product Innovation Management, 17(2), 99–109.

    Article  Google Scholar 

  • Fiebig, D. G., Keane, M. P., Louviere, J., & Wasi, N. (2010). The generalized multinomial logit model: Accounting for scale and coefficient heterogeneity. Marketing Science, 29(3), 3293–421.

  • Green, P. E., Douglas Carroll, J., & Goldberg, S. M. (1981). A general approach to product design optimization via conjoint analysis. Journal of Marketing, 45(3), 17–37.

    Article  Google Scholar 

  • Hauser, J. R., Eggers, F., & Selove, M. (2019). The strategic implications of scale in choice-based conjoint analysis. Marketing Science, 38(6), 1059–1081.

    Google Scholar 

  • Hofstede, F. T., Kim, Y., & Wedel, M. (2002). Bayesian prediction in hybrid conjoint analysis. Journal of Marketing Research, 39(2), 253–261.

    Article  Google Scholar 

  • Johnson, R.M., & et al. (1987). Adaptive conjoint analysis. Sawtooth Software Conference Proceedings. Sawtooth Software Ketchum, ID, pp. 253–265.

  • Joo, M., Thompson, M. L., & Allenby, G. M. (2019). Optimal product design by sequential experiments in high dimensions. Management Science, 65(7), 3235–3254.

    Article  Google Scholar 

  • Kamrani, A. K., Salhieh Sa’Ed, M., & Salhieh Sa’ed, M. (2002). Product design for modularity (2nd ed.). Boston/Dordrecht/London: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Kohli, R., & Krishnamurti, R. (1987). A heuristic approach to product design. Management Science, 33(12), 1523–1533.

    Article  Google Scholar 

  • Kosyakova, T., Otter, T., Misra, S., & Neuerburg, C. (2020). Exact mcmc for choices from menus–measuring substitution and complementarity among menu items. Marketing Science, 39(2), 427–447.

    Article  Google Scholar 

  • Lenk, P. J., DeSarbo, W. S., Green, P. E., & Young, M. R. (1996). Hierarchical bayes conjoint analysis: Recovery of partworth heterogeneity from reduced experimental designs. Marketing Science, 15(2), 173–191.

    Article  Google Scholar 

  • Luo, L., Kannan, P. K., & Ratchford, B. T. (2008). Incorporating subjective characteristics in product design and evaluations. Journal of Marketing Research, 45(2), 182–194.

    Article  Google Scholar 

  • Marshall, P., & Bradlow, E. T. (2002). A unified approach to conjoint analysis models. Journal of the American Statistical Association, 97(459), 674–682.

    Article  Google Scholar 

  • McFadden, D. (1981). Structural analysis of discrete data with econometric applications, chap. Econometric models of probabilistic choice, chapter \(5\). C. Manski & D. Mcfadden (Eds). (pp. 198–272). Cambridge: MIT Press

  • McFadden, D. (2014). Testimony of Daniel L. McFadden in the matter of determination of rates and terms for digital performance in sound recordings and ephemeral recordings (WEB IV). Before the Copyright Royalty Board Library of Congress, Washington DC, Docket No. 14-CRB-0001-WR, October 6.

  • Netzer, O., & Srinivasan, V. (2011). Adaptive self-explication of multiattribute preferences. Journal of Marketing Research, 48(1), 140–156.

    Article  Google Scholar 

  • Netzer, O., Toubia, O., Bradlow, E. T., Dahan, E., Evgeniou, T., Feinberg, F. M., Feit, E. M., Hui, S. K., Johnson, J., Liechty, J. C., & et al. (2008). Beyond conjoint analysis: Advances in preference measurement. Marketing Letters, 19(3–4), 337.

  • Oppewal, H., Louviere, J. J., & Timmermans, H. J. P. (1994). Modeling hierarchical conjoint processes with integrated choice experiments. Journal of Marketing Research, 31(1), 92–105.

    Article  Google Scholar 

  • Orme, B. K. (2014). Getting started with conjoint analysis: strategies for product design and pricing research (3rd ed.). Glendale, CA: Research Publishers LLC.

    Google Scholar 

  • Orme, B. K. (2020). Getting started with conjoint analysis: strategies for product design and pricing research (4th ed.). Manhattan Beach, CA: Research Publishers LLC.

    Google Scholar 

  • Orme, B.K. (2020b). Result of sawtooth software user survey. retrived sep 21, 2020, from. http://www.sawtoothsoftware.com/about-us/news-and-events/news /.

  • Park, Y.-H., Ding, M., & Rao, V. R. (2008). Eliciting preference for complex products: A web-based upgrading method. Journal of Marketing Research, 45(5), 562–574.

    Article  Google Scholar 

  • Ro, Y. K., Liker, J. K., & Fixson, S. K. (2007). Modularity as a strategy for supply chain coordination: The case of us auto. IEEE Transactions on Engineering Management, 54(1), 172–189.

    Article  Google Scholar 

  • Rossi, P. E., Allenby, G. M., & McCulloch, R. (2005). Bayesian statistics and marketing. Hoboken, NJ: John Wiley & Sons.

    Book  Google Scholar 

  • Scholz, S. W., Meissner, M., & Decker, R. (2010). Measuring consumer preferences for complex products: A compositional approach basedonpaired comparisons. Journal of Marketing Research, 47(4), 685–698.

    Article  Google Scholar 

  • Sonnier, G., Ainslie, A., & Otter, T. (2007). Heterogeneity distributions of willingness-to-pay in choice models. Quantitative Marketing and Economics, 5(3), 313–331.

    Article  Google Scholar 

  • Srinivasan, V., Lovejoy, W. S., & Beach, D. (1997). Integrated product design for marketability and manufacturing. Journal of Marketing Research, 34(1), 154–163.

    Article  Google Scholar 

  • Swait, J., & Louviere, J. (1993). The role of the scale parameter in the estimation and comparison of multinomial logit models. Journal of Marketing Research, 30(3), 305–314.

    Article  Google Scholar 

  • Thaler, R. (1985). Mental accounting and consumer choice. Marketing Science, 4(3), 199–214.

    Article  Google Scholar 

  • Wind, J., Green, P. E., Shifflet, D., & Scarbrough, M. (1989). Courtyard by marriott: Designing a hotel facility with consumer-based marketing models. Interfaces, 19(1), 25–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiChun Miriam Liu.

Ethics declarations

Conflicts of interest

Generous financial support was provided by the Ford Motor Company, GRT00052940. The authors thank Anthony Bradfield, Peter Kurz, and Bryan Orme for providing helpful comments.

Appendices

Appendix A:

We illustrate the estimation procedure of our Unrestricted integrated model in the empirical analysis. The model is specified in equation Eqs. 10, 12, and 14 as follows. The specification of a component exercise is:

$$\begin{aligned} u_{hit} = \frac{\sum _{n=1}^{N} \alpha _{hn} a_{hint} - p_{hit} }{\sigma _{h}} + \epsilon _{hit} \text {,} \end{aligned}$$
(18)

and the specification for the main conjoint exercise with c components is:

$$\begin{aligned} u^{\prime }_{hlt^{\prime }} = \sum _{r=1}^{R} \beta _{hr} x_{hlrt^{\prime }} + \beta _{hp} \left( p_{hlt^{\prime }} - \sum _{c=1}^{C} \gamma _{hc} \cdot g_{hlct^{\prime }} \right) + \epsilon ^{\prime }_{hlt^{\prime }} \text {,} \end{aligned}$$
(19)

where

$$\begin{aligned} g_{hlct^{\prime }} = \left[ \sum _{n=1}^{N} \alpha _{hn} a_{hlnt^{\prime }} \right] _{c} \text {.} \end{aligned}$$
(20)

Here the subscript c indicates parameters and variables for component c conjoint, and the \(g_{hlct^{\prime }}\) is the monetized utility of package c conditional on the part-worth of component exercise and the package structure that appears in the main exercise. The parameters \(\sigma _{h}\) and \(\gamma _{h}\) are constrained to be positive through an algebraic transformation \(\sigma _{h}\) = \(exp(\sigma ^{*}_{h})\) and \(\gamma _{h}\) = \(exp(\gamma ^{*}_{h})\) that allows us to estimate \(\sigma ^{*}_{h}\) and \(\gamma ^{*}_{h}\) unconditionally.

Let \(y^{(c)}_{hit}\) and \(y_{hlt^{\prime }}\) denotes the response of individual h in a choice task of the component- and main- level conjoint, respectively. The subscript c indicates the response for component c conjoint. The \(y^{(c)}_{hit}\) equals 1 if option i in the choice task t of the component c conjoint is chosen and 0 otherwise, whereas \(y_{hlt^{\prime }}\) equals 1 if option l in the choice task \(t^{\prime }\) of the main conjoint is chosen and 0 otherwise. The likelihood of a component exercise is:

$$\begin{aligned} L^{(c)}_{h}(\alpha ^{(c)}_{hn}, \sigma _{h} | y^{(c)}_{hit} ) = \prod _{t^{(c)}=1}^{T^{(c)}} \prod _{i^{(c)}=1}^{K} \left[ \frac{ exp \left[ \bar{u}^{(c)}_{hit} ( \alpha ^{(c)}_{hn}, \sigma _{h} ) \right] }{ \sum _{i^{\prime }=1}^{K} exp \left[ \bar{u}^{(c)}_{hi't} ( \alpha ^{(c)}_{hn}, \sigma _{h} ) \right] } \right] ^{y^{(c)}_{hit}} \text {,} \end{aligned}$$
(21)

where

$$\begin{aligned} \bar{u}^{(c)}_{hit} ( \alpha ^{(c)}_{hn}, \sigma _{h} )&= \frac{ \left[ \sum _{n=1}^{N} \alpha _{hn} a_{hint} - p_{hit} \right] _{c}}{\sigma _{h}} \text {,} \end{aligned}$$
(22)

\(T^{(c)}\) is the observation number in component c conjoint, and the likelihood function of the main level model is:

$$\begin{aligned} L_{h}(\beta _{hr}, \beta _{hp}, \gamma _{hc} | \alpha ^{(c)}_{hn} , y_{hlt^{\prime }} ) = \prod _{t^{\prime }=1}^{T^{\prime }} \prod _{l=1}^{K} \left[ \frac{ exp \left[ \bar{u}_{hlt^{\prime }} ( \beta _{hr}, \beta _{hp}, \gamma _{hc} | \alpha ^{(c)}_{hn} ) \right] }{ \sum _{l^{\prime }=1}^{K} exp \left[ \bar{u}_{hl't^{\prime }} ( \beta _{hr}, \beta _{hp}, \gamma _{hc} | \alpha ^{(c)}_{hn} ) \right] } \right] ^{y_{hlt^{\prime }}} \text {,} \end{aligned}$$
(23)

where

$$\begin{aligned} \bar{u}_{hlt^{\prime }} ( \beta _{hr}, \beta _{hp}, \gamma _{hc} | \alpha ^{(c)}_{hn} )= & {} u^{\prime }_{hlt^{\prime }} - \epsilon ^{\prime }_{hlt^{\prime }}\nonumber \\= & {} \sum _{r=1}^{R} \beta _{hr} x_{hlrt^{\prime }} + \beta _{hp} \left( p_{hlt^{\prime }} - \sum _{c=1}^{C} \gamma _{hc} \cdot g_{hlct^{\prime }} \right) \text {,} \end{aligned}$$
(24)

\(T^{\prime }\) is number of choice task in the main conjoint. As we estimate two models jointly, the joint likelihood function becomes:

$$\begin{aligned}&L_{h}^{*}(\alpha ^{(c)}_{hn}, \sigma _{h}, \beta _{hr}, \beta _{hp}, \gamma _{hc} | y^{(c)}_{hit}, y_{hlt^{\prime }} )\nonumber \\= & {} \prod _{c=1}^{C} L^{(c)}_{h}(\alpha ^{(c)}_{hn}, \sigma _{h} | y^{(c)}_{hit} ) \cdot L_{h}(\beta _{hr}, \beta _{hp}, \gamma _{hc} | \alpha ^{(c)}_{hn} , y_{hlt^{\prime }} )\nonumber \\= & {} \prod _{c=1}^{C} \prod _{t^{(c)}=1}^{T^{(c)}} \prod _{i^{(c)}=1}^{K} \left[ \frac{ exp \left[ \bar{u}^{(c)}_{hit} ( \alpha ^{(c)}_{hn}, \sigma _{h} ) \right] }{ \sum _{i^{\prime }=1}^{K} exp \left[ \bar{u}^{(c)}_{hi't} ( \alpha ^{(c)}_{hn}, \sigma _{h} ) \right] } \right] ^{y^{(c)}_{hit}} \prod _{t^{\prime }=1}^{T^{\prime }} \prod _{l=1}^{K} \left[ \frac{ exp \left[ \bar{u}_{hlt^{\prime }} ( \beta _{hr}, \beta _{hp}, \gamma _{hc} | \alpha ^{(c)}_{hn} ) \right] }{ \sum _{l^{\prime }=1}^{K} exp \left[ \bar{u}_{hl't^{\prime }} ( \beta _{hr}, \beta _{hp}, \gamma _{hc} | \alpha ^{(c)}_{hn} ) \right] } \right] ^{y_{hlt^{\prime }}} \text {,} \end{aligned}$$
(25)

where C is the total number of component exercises. For heterogeneity we assume a Normal distribution of heterogeneity for all the parameters:

$$\begin{aligned} \theta _{h} = ( \alpha _{h} , \sigma ^{*}_{h}, \beta _{h}, \gamma ^{*}_{h} )' \sim N(\bar{\theta }, V_{\theta }) , \end{aligned}$$
(26)

where \(\theta _{h}\) is a vector of parameters for individual h and \(\sigma ^{*}_{h}\) = \(log(\sigma _{h})\) and \(\gamma ^{*}_{h}\) = \(log(\gamma _{h})\) ensures the validity of estimating the scale and adjustment parameters. Estimation proceeds as follows:

Step 1:

Set start value for all variables of interest: \(\theta _{h}\), \(\bar{\theta }\), and \(V_{\theta }\) .

Step 2:

Generate \(\alpha ^{(c)}_{hn}\), \(\sigma ^{*}_{h}\), \(\beta _{hr}\), \(\beta _{hp}\), and \(\gamma ^{*}_{hc}\) for \(h = 1, 2, ..., H\) and \(c = 1, 2, ..., C\) given \(\bar{\theta }\), and \(V_{\theta }\) utilizing the random walk Metropolis-Hasting (RWMH) algorithm with the step size sFootnote 4:

(a):

Draw \(\alpha ^{(c)New}_{hn}\), \(\sigma ^{*New}_{h}\), \(\beta ^{New}_{hr}\), \(\beta ^{New}_{hp}\), \(\gamma ^{*New}_{hc}\) \(\sim N(\theta _{h}^{Old}, s^{2}V_{\theta }^{Old})\), where \(\theta _{h}^{Old}\) is the previous value of \(\theta _{h}\).

(b):

Calculate the monetized utility of each component, \(g_{hlct^{\prime }}\), given \(\alpha ^{(c)New}_{hn}\) and the package combination presented in each choice task of the main conjoint, \(a^{(c)}_{hlnt^{\prime }}\), where

$$\begin{aligned} g_{hlct^{\prime }} = \left[ \sum _{n=1}^{N} \alpha ^{New}_{hn} a_{hlnt^{\prime }} \right] _{c} \text {.} \end{aligned}$$
(27)
(c):

Accept \(\alpha ^{(c)New}_{hn}\), \(\sigma ^{*New}_{h}\), \(\beta ^{New}_{hr}\), \(\beta ^{New}_{hp}\), and \(\gamma ^{*New}_{hc}\) using the accept-rejection probability:

$$\begin{aligned}&Pr(Accept)\nonumber \\= & {} min \left[ 1, \frac{ L_{h}^{*}(\theta ^{New}_{h} | y^{(c)}_{hit}, y_{hlt^{\prime }} ) \cdot d( \theta ^{New}_{h} | \bar{\theta }, V_{\theta } )}{L_{h}^{*}(\theta ^{Old}_{h} | y^{(c)}_{hit}, y_{hlt^{\prime }} ) \cdot d( \theta ^{Old}_{h} | \bar{\theta }, V_{\theta } )} \right] , \nonumber \\= & {} min \left[ 1, \frac{ L_{h}^{*}(\alpha ^{(c)New}_{hn}, \sigma ^{New}_{h}, \beta ^{New}_{hr}, \beta ^{New}_{hp}, \gamma ^{New}_{hc} | y^{(c)}_{hit}, y_{hlt^{\prime }} ) \cdot d( \alpha ^{(c)New}_{hn}, \sigma ^{New}_{h}, \beta ^{New}_{hr}, \beta ^{New}_{hp}, \gamma ^{New}_{hc} | \bar{\theta }, V_{\theta } )}{L_{h}^{*}(\alpha ^{(c)Old}_{hn},\sigma ^{Old}_{h}, \beta ^{Old}_{hr}, \beta ^{Old}_{hp}, \gamma ^{Old}_{hc} | y^{(c)}_{hit}, y_{hlt^{\prime }} ) \cdot d( \alpha ^{(c)Old}_{hn}, \sigma ^{Old}_{h},\beta ^{Old}_{hr}, \beta ^{Old}_{hp}, \gamma ^{Old}_{hc} | \bar{\theta }, V_{\theta } )} \right] \end{aligned}$$
(28)

where \(\sigma ^{New}_{h}\) = \(exp(\sigma ^{*New}_{h})\), \(\sigma ^{Old}_{h}\) = \(exp(\sigma ^{*Old}_{h})\), \(\gamma ^{New}_{hc}\) = \(exp(\gamma ^{*New}_{hc})\), \(\gamma ^{Old}_{hc}\) = \(exp(\gamma ^{*Old}_{hc})\) and \(d( \cdot | \bar{\theta }, V_{\theta } )\) is the density of \(N(\bar{\theta }, V_{\theta })\).

Step 3:

Generate \(\bar{\theta }\) and \(V_{\theta }\) given \(\{\theta _{h} \}\) with the Bayesian multivariate regression proposed by Rossi et al. (2005):

$$\begin{aligned} \{\theta _{h} \} = \bar{\theta } + \varphi _{h}, \; \varphi _{h} \sim N(0, V_{\theta }). \end{aligned}$$

A diffuse prior is used to estimate the \(\bar{\theta }|V_{\theta }\sim N(0, 100V_{\theta })\) and \(V_{\theta } \sim IW(\nu + 3, (\nu +3)I_{\nu })\) where \(\nu\) is the total number of parameter for an individual.

Step 4:

Repeat step (2) to step (3) in each iteration of the MCMC until convergence.

Appendix B:

Our analysis apply two measurements, the hit ratio and the hit probability, to evaluate the prediction of the Unrestricted and alternative models. The hit ratio (HR) measures how many times does our model correctly predict the actual choice of consumer conditional on the parameter estimates, whereas the hit probability (HP) measures the probability of observed choice conditional on the parameter estimates. Two measures are calculated using the following equations:

$$\begin{aligned} HR = \frac{1}{H \times T^{\prime } \times Itr} \sum _{h=1}^{H} \sum _{t^{\prime }=1}^{T^{\prime }} \sum _{itr = 1}^{Itr} \mathrm {I} \left( y_{ht^{\prime }} = argmax_{l} \left[ {\bar{u^{\prime }}_{hlt^{\prime }}} ( \beta ^{(itr)}_{h} , \alpha ^{(itr)}_{h}, \sigma ^{(itr)}_{h}, \gamma ^{(itr)}_{h}, a_{hlt^{\prime }} ) \right] \right) \;, \end{aligned}$$
(29)
$$\begin{aligned} HP = \frac{1}{H \times T^{\prime } \times Itr} \sum _{h=1}^{H} \sum _{t^{\prime }=1}^{T^{\prime }} \sum _{itr = 1}^{Itr} \prod _{l=1}^{K} \left[ \frac{ exp \left( \bar{u^{\prime }}_{hlt^{\prime }}( \beta ^{(itr)}_{h} , \alpha ^{(itr)}_{h}, \sigma ^{(itr)}_{h}, \gamma ^{(itr)}_{h}, a_{hlt^{\prime }} ) \right) }{ \sum _{l^{\prime }=1}^{K} exp \left( \bar{u^{\prime }}_{hl't^{\prime }} ( \beta ^{(itr)}_{h} , \alpha ^{(itr)}_{h}, \sigma ^{(itr)}_{h}, \gamma ^{(itr)}_{h}, a_{hl't^{\prime }} ) \right) } \right] ^{y_{hl't^{\prime }}} \;. \end{aligned}$$
(30)

where H is the number of respondents, \(T^{\prime }\) is the number of observation per individual in the main level study, Itr is the number of MCMC iterations. K is the number of options presented in a choice task, \(t^{\prime }\). \(y_{ht^{\prime }}\) indicates the selected option of individual h in choice task \(t^{\prime }\) condition on the each draw of iteration. The upper script (itr) indicates the order of the draw, \(\beta ^{(itr)}_{h}\), \(\alpha ^{(itr)}_{h}\), and \(\sigma ^{(itr)}_{h}\) are the part-worth and scale parameter of individual h in an iteration. \(\gamma ^{(itr)}_{h}\) is individual h’s (itr)th draw of adjustments parameters for components and the \(a_{hlt^{\prime }}\) is the given package structure present in choice task \(t^{\prime }\). \(\mathrm {I} ({\cdot })\) is an indicator function and \(\bar{u^{\prime }}_{hlt^{\prime }}\) is the deterministic utility of alternative l for individual h in choice task \(t^{\prime }\), e.g.,

$$\begin{aligned} \bar{u^{\prime }}_{hlt^{\prime }}&( \beta ^{(itr)}_{h} , \alpha ^{(itr)}_{h}, \sigma ^{(itr)}_{h}, \gamma ^{(itr)}_{hc}, a_{hlt^{\prime }} )\nonumber \\=\ & {} u^{\prime }_{hlt^{\prime }} - \epsilon ^{\prime }_{hlt^{\prime }}\nonumber \\= & {} \sum _{r=1}^{R} \beta _{hr} x_{hlrt^{\prime }} + \beta _{hp} \left( p_{hlt^{\prime }} - \sum _{c=1}^{C} \gamma _{hc} \cdot g_{hlct^{\prime }} \right) \end{aligned}$$
(31)

for Unrestricted integrated model,

$$\begin{aligned} \bar{u^{\prime }}_{hlt^{\prime }}&( \beta ^{(itr)}_{h} , \alpha ^{(itr)}_{h}, \sigma ^{(itr)}_{h}, \gamma ^{(itr)}_{h}, a_{hlt^{\prime }} )\nonumber \\=\ & {} u^{\prime }_{hlt^{\prime }} - \epsilon ^{\prime }_{hlt^{\prime }}\nonumber \\= & {} \sum _{r=1}^{R} \beta _{hr} x_{hlrt^{\prime }} + \beta _{hp} \left( p_{hlt^{\prime }} - \gamma _{h} \sum _{c=1}^{C} g_{hlct^{\prime }} \right) \end{aligned}$$
(32)

for Restrictive integrated model. Finally, the deterministic utility of Naïve integrated model is:

$$\begin{aligned} \bar{u^{\prime }}_{hlt^{\prime }}&( \beta ^{(itr)}_{h} , \alpha ^{(itr)}_{h}, \sigma ^{(itr)}_{h}, a_{hlt^{\prime }} )\nonumber \\=\ & {} u^{\prime }_{hlt^{\prime }} - \epsilon ^{\prime }_{hlt^{\prime }}\nonumber \\= & {} \sum _{r=1}^{R} \beta _{hr} x_{hlrt^{\prime }} + \beta _{hp} \left( p_{hlt^{\prime }} - \sum _{c=1}^{C} g_{hlct^{\prime }} \right) , \end{aligned}$$
(33)

where

$$\begin{aligned} g_{hlct^{\prime }} = \sum _{n_{c}=1}^{N_{c}} \alpha _{hn_{c}} a_{hln_{c}t^{\prime }} \text {.} \end{aligned}$$
(34)

Appendix C:

We examine 14 packages from five examined automotive manufactures that align closely with our conjoint design: i) the Ford - The Ford Co-Pilot360™ Assist Package with SYNC 3Footnote 5, the Safe and Smart PackageFootnote 6, and Ford Co-Pilot360™Footnote 7, ii) the Toyota - Premium PackageFootnote 8, Premium Package with OptionsFootnote 9, and 12.3 Touch-screen with Bird Eye View MonitorFootnote 10 iii) the Honda - Sensing PackageFootnote 11, iv) the Nissan - Premium PackageFootnote 12 , Sun and Sound Touring PackageFootnote 13, and Driver Assist PackageFootnote 14, and v) the Chevrolet - Driver Confidence Package (2021 Trailblazer)Footnote 15, Driver Confidence Package (2020 Sonic)Footnote 16, Enhanced Driver Confidence Package (2020 Malibu)Footnote 17, and Driver Confidence Package (2020 Sparkfwd)Footnote 18. Composition details of these marketplace packages and the corresponding package items of the study are shown in the left two columns of Tables 8, 9, and 10, respectively. The MSRP column presents the price of marketplace packages on the configuration webpages of automobile manufacturesFootnote 19 and the WTP of 14 marketplace packages for Naïve and Unrestricted model from forward and backward approach, respectively, are shown in the right hand side of the tables. The last row of Table 10 presents the average MSRP of 14 packages, its average WTP of models using forward and backward approaches, respectively, and the average WTP for the Naïve and Unrestricted models.

Table 8 WTP for manufacture marketplace packages
Table 9 WTP for manufacture marketplace packages (Cont.)
Table 10 WTP for Manufacture Marketplace Packages (Cont.)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y.M., Brazell, J.D. & Allenby, G.M. Non-linear pricing effects in conjoint analysis. Quant Mark Econ 20, 397–430 (2022). https://doi.org/10.1007/s11129-022-09256-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11129-022-09256-3

Keywords

Navigation