Quantitative Marketing and Economics

, Volume 12, Issue 2, pp 209–233 | Cite as

Meta-analyses using information reweighting: An application to online advertising

  • Pengyuan WangEmail author
  • Eric T. Bradlow
  • Edward I. George


Because technology-enabled marketing research has led to information arriving at a rapid pace, methods in marketing that allow for coherent, sequential and fast information integration are needed. We propose in this research a new approach to information integration: Information Reweighted Priors (IRPs). It is a sample reweighting approach which utilizes the output from a Bayesian model fit using Markov Chain Monte Carlo, with no restrictions on the likelihood, prior distributions, or data structure; hence a general purpose tool. We demonstrate the approach with simulated datasets and an online advertising dataset with external information obtained from i) previous advertising studies in the industry from a major online advertising portal, ii) past academic studies of online adverting and iii) out-of-sample summaries of the dataset.


Information integration Prior reweighting Advertising Informative priors Statistical computing 

JEL Classifications

C11 - Bayesian Analysis: General M31 - Marketing M37 - Advertising 


  1. Ali, M.H., Gerea, C., Raman, B.S., Sezgin, B., Tarnavski, T., Verona, T., Wang, P., Zabback, P., Ananthanarayan, A., Kirilov, A., et al. (2009). Microsoft cep server and online behavioral targeting. Proceedings of the VLDB Endowment, 2(2), 1558–1561.CrossRefGoogle Scholar
  2. Allenby, G., & Rossi, P. (1991). Quality perceptions and asymmetric switching between brands. Marketing Science, 10, 185–204.CrossRefGoogle Scholar
  3. Allenby, G.M., Arora, N., Ginter, J.L. (1995). Incorporating prior knowledge into the analysis of conjoint studies. Journal of Marketing Research, 152–162.Google Scholar
  4. Allenby, G.M., & Rossi, P.E. (1993). A marginal-predictive approach to identifying household parameters. Marketing Letters, 4(3), 227–239.CrossRefGoogle Scholar
  5. Arjas, E., & Gasbarra, D. (1996). Bayesian inference of survival probabilities, under stochastic ordering constraints. Journal of the American Statistical Association, 1101–1109.Google Scholar
  6. Boatwright, P., McCulloch, R., Rossi, P. (1999). Account-level modeling for trade promotion: An application of a constrained parameter hierarchical model. Journal of the American Statistical Association, 94(448), 1063–1073.CrossRefGoogle Scholar
  7. Bradlow, E., & Zaslavsky, A. (1997). Case influence analysis in bayesian inference. Journal of Computational and Graphical Statistics, 6, 314–331.Google Scholar
  8. Braun, M., & Moe, W. (2011). Online advertising campaigns: Modeling the effects of multiple ad creatives.Google Scholar
  9. Briggs, R. (1999). Abolish clickthrough now!. Digitrends Fall, 1999.Google Scholar
  10. Buckley, P. (1988). Nested multinomial logit analysis of scanner data for a hierarchical choice model. Journal of Business Research, 17, 133–154.CrossRefGoogle Scholar
  11. Chen, M., & Ibrahim, J. (2006). The relationship between the power prior and hierarchical models. Bayesian Analysis, 1(3), 551–574.MathSciNetGoogle Scholar
  12. Coolen, F. (1996). On bayesian reliability analysis with informative priors and censoring. Reliability Engineering & System Safety, 53(1), 91–98.CrossRefGoogle Scholar
  13. DeSarbo, W., Ebbes, P., Fong, D., Snow, C. (2010). Revisiting customer value analysis in a heterogeneous market. Journal of Modelling in Management, 5(1), 8–24.CrossRefGoogle Scholar
  14. Dow, J., & Endersby, J. (2004). Multinomial probit and multinomial logit: a comparison of choice models for voting research. Electoral Studies, 23(1), 107–122.CrossRefGoogle Scholar
  15. Dreze, X., & Hussherr, F. (2003). Internet advertising: is anybody watchingJournal of interactive marketing, 17(4), 8–23.CrossRefGoogle Scholar
  16. Dubas, J., Lee, B., Mark, N. (2010). A multinomial logit approach to exchange rate policy classification with an application to growth. Journal of International Money and Finance, 29(7), 1438–1462.CrossRefGoogle Scholar
  17. Gelfand, A., & Smith, A. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American statistical association, 85(410), 398–409.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian analysis, 1(3), 515–533.MathSciNetGoogle Scholar
  19. Gelman, A., Jakulin, A., Pittau, M., Su, Y. (2008). A weakly informative default prior distribution for logistic and other regression models. The Annals of Applied Statistics, 2(4), 1360–1383.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Gelman, A., & Meng, X.-L. (1998). Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical Science, 13(2), 163–185.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Gelman, A., & Rubin, D. (1992). Inference from iterative simulation using multiple sequences. Statistical science, 7(4), 457–472.CrossRefGoogle Scholar
  22. Guiver, J., & Snelson, E. (2009). Bayesian inference for plackett-luce ranking models. In proceedings of the 26th annual international conference on machine learning, pp. 377–384. ACM.Google Scholar
  23. Hahn, E.D. (2006). Re-examining informative prior elicitation through the lens of markov chain monte carlo methods. Journal of the royal statistical society: Series A (Statistics in Society), 169(1), 37–48.MathSciNetCrossRefGoogle Scholar
  24. Higgins, J., & Whitehead, A. (1996). Borrowing strength from external trials in a meta-analysis. Statistics in Medicine, 15(24), 2733–2749.CrossRefPubMedGoogle Scholar
  25. Hofstede, F., Kim, Y., Wedel, M. (2002). Bayesian prediction in hybrid conjoint analysis. Journal of Marketing Research, 39(2), 253–261.CrossRefGoogle Scholar
  26. Horsky, D., Misra, S., Nelson, P. (2006). Observed and unobserved preference heterogeneity in brand-choice models. Marketing Science, 25(4), 322–335.CrossRefGoogle Scholar
  27. Ibrahim, J., & Chen, M. (1998). Prior distributions and bayesian computation for proportional hazards models. Sankhyā: The Indian Journal of Statistics Series B, 60(1), 48–64.MathSciNetzbMATHGoogle Scholar
  28. Ibrahim, J., & Chen, M. (2000). Power prior distributions for regression models. Statistical Science, 15(1), 46–60.MathSciNetCrossRefGoogle Scholar
  29. Jaynes, E (1985). Highly informative priors.Google Scholar
  30. Kadane, J.B., Dickey, J.M., Winkler, R.L., Smith, W.S., Peters, S.C. (1980). Interactive elicitation of opinion for a normal linear model. Journal of the American Statistical Association, 75(372), 845–854.MathSciNetCrossRefGoogle Scholar
  31. Kullback, S., & Leibler, R.A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1), 79–86.MathSciNetCrossRefzbMATHGoogle Scholar
  32. Lenk, P., DeSarbo, W., Green, P., Young, M. (1996). Hierarchical bayes conjoint analysis: Recovery of partworth heterogeneity from reduced experimental designs. Marketing Science, 15(2), 173–191.CrossRefGoogle Scholar
  33. Lenk, P., & Orme, B. (2009). The value of informative priors in bayesian inference with sparse data. Journal of Marketing Research, 46(6), 832–845.CrossRefGoogle Scholar
  34. Lenk, P., & Rao, A. (1990). New models from old: forecasting product adoption by hierarchical bayes procedures. Marketing Science, 9, 42–53.CrossRefGoogle Scholar
  35. Lind, S., & Kivisto-Rahnasto, J. (2008). Utilization of external accident information in companies’ safety promotion-case: Finnish metal and transportation industry. Safety Science, 46(5), 802–814.CrossRefGoogle Scholar
  36. Little, R., & Rubin, D. (1983). On jointly estimating parameters and missing data by maximizing the complete-data likelihood. The American Statistician, 37(3), 218–220.Google Scholar
  37. Lybbert, T., Barrett, C., McPeak, J., Luseno, W. (2007). Bayesian herders: Updating of rainfall beliefs in response to external forecasts. World Development, 35(3), 480–497.CrossRefGoogle Scholar
  38. MacEachern, S., & Peruggia, M. (2000). Subsampling the gibbs sampler: Variance reduction. Statistics & probability letters, 47(1), 91–98.MathSciNetCrossRefzbMATHGoogle Scholar
  39. Manchanda, P., Dubé, J., Goh, K., Chintagunta, P. (2006). The effect of banner advertising on internet purchasing. Journal of Marketing Research, 43(1), 98–108.CrossRefGoogle Scholar
  40. Marshall, P., & Bradlow, E.T. (2002). A unified approach to conjoint analysis models. Journal of the American Statistical Association, 97(459), 674–682.MathSciNetCrossRefzbMATHGoogle Scholar
  41. Meng, X.-L., & Schilling, S. (2002). Warp bridge sampling. Journal of Computational and Graphical Statistics, 11(3), 552–586.MathSciNetCrossRefGoogle Scholar
  42. Moe, W., & Fader, P. (2004). Dynamic conversion behavior at e-commerce sites. Management Science, 50(3), 326–335.CrossRefGoogle Scholar
  43. Montgomery, A., & Rossi, P. (1999). Estimating price elasticities with theory-based priors. Journal of Marketing Research, 36, 413–423.CrossRefGoogle Scholar
  44. Musalem, A., Bradlow, E., Raju, J. (2008). Who’s got the coupon? estimating consumer preferences and coupon usage from aggregate information. Journal of Marketing Research, 45(6), 715–730.CrossRefGoogle Scholar
  45. Musalem, A., Bradlow, E., Raju, J. (2009). Bayesian estimation of random-coefficients choice models using aggregate data. Journal of Applied Econometrics, 24(3), 490–516.MathSciNetCrossRefGoogle Scholar
  46. Narlikar, L., Gordân, R., Ohler, U., Hartemink, A. J. (2006). Informative priors based on transcription factor structural class improve de novo motif discovery. Bioinformatics, 22(14), e384—e392.CrossRefPubMedGoogle Scholar
  47. O’Donnell, C., & Coelli, T. (2005). A bayesian approach to imposing curvature on distance functions. Journal of Econometrics, 126(2), 493–523.MathSciNetCrossRefGoogle Scholar
  48. Owen, A., & Zhou, Y. (2000). Safe and effective importance sampling. Journal of the American Statistical Association, 95, 135–143.MathSciNetCrossRefzbMATHGoogle Scholar
  49. Peruggia, M. (1997). On the variability of case-deletion importance sampling weights in the bayesian linear model. Journal of the American Statistical Association, 92, 199–207.MathSciNetCrossRefzbMATHGoogle Scholar
  50. R Development Core Team (2008). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.Google Scholar
  51. Raina, R., Ng, A. Y., Koller, D. (2006). Constructing informative priors using transfer learning. In Proceedings of the 23rd international conference on Machine learning (pp. 713–720). ACM.Google Scholar
  52. Robert, C., & Casella, G. (2004). Monte Carlo statistical methods. Springer Verlag.Google Scholar
  53. Rossi, P., & Allenby, G. (1993). A bayesian approach to estimating household parameters. Journal of Marketing Research, 171–182.Google Scholar
  54. Rossi, P., Allenby, G., McCulloch, R. (2005). Bayesian statistics and marketing. New York: Wiley.CrossRefzbMATHGoogle Scholar
  55. Rossi, P.E., Allenby, G.M., McCulloch, R.E. (2005). Bayesian statistics and marketing: Wiley.Google Scholar
  56. Rubin, D. et al. (1988). Using the sir algorithm to simulate posterior distributions. Bayesian Statistics, 3, 395–402.Google Scholar
  57. Sandor, Z., & Wedel, M. (2001). Designing conjoint choice experiments using managers’ prior beliefs. Journal of Marketing Research, 28, 430–444.CrossRefGoogle Scholar
  58. Sharp, B., & Sharp, A. (1997). Loyalty programs and their impact on repeat-purchase loyalty patterns. International Journal of Research in Marketing, 14(5), 473–486.CrossRefGoogle Scholar
  59. Sheiner, L., & Beal, S. (1981). Some suggestions for measuring predictive performance. Journal of Pharmacokinetics and Pharmacodynamics, 9(4), 503–512.CrossRefGoogle Scholar
  60. Shim, S., & Mahoney, M. (1992). The elderly mail-order catalog user of fashion products:: A profile of the heavy purchaser. Journal of Direct Marketing, 6(1), 49–58.CrossRefGoogle Scholar
  61. Smith, A., & Gelfand, A. (1992). Bayesian statistics without tears: a sampling-resampling perspective. American statistician, 46(2), 84–88.MathSciNetGoogle Scholar
  62. Song, Y. (2001). Proof that online advertising works. Digital Marketing Insights, 2001.Google Scholar
  63. Sonnier, G., Ainslie, A., Otter, T. (2007). Heterogeneity distributions of willingness-to-pay in choice models. Quantitative Marketing and Economics, 5(3), 313–331.CrossRefGoogle Scholar
  64. Srinivasan, V., Jain, A.K., Malhotra, N.K. (1983). Improving predictive power of conjoint analysis by constrained parameter estimation. Journal of Marketing Research, 433–438.Google Scholar
  65. Sutton, A., & Abrams, K. (2001). Bayesian methods in meta-analysis and evidence synthesis. Statistical Methods in Medical Research, 10(4), 277.CrossRefPubMedzbMATHGoogle Scholar
  66. Trikalinos, T., Salanti, G., Zintzaras, E., Ioannidis, J. (2008). Meta-analysis methods. Advances in genetics, 60, 311–334.CrossRefPubMedGoogle Scholar
  67. Voter, A.F. (1985). A monte carlo method for determining free-energy differences and transition state theory rate constants. The Journal of chemical physics, 82, 1890.CrossRefADSGoogle Scholar
  68. Wedel, M., & Pieters, R. (2000). Eye fixations on advertisements and memory for brands: a model and findings. Marketing Science, 19, 297–312.CrossRefGoogle Scholar
  69. Winkler, R.L., Smith, J.E., Fryback, D.G. (2002). The role of informative priors in zero-numerator problems: being conservative versus being candid. The American Statistician, 56(1), 1–4.MathSciNetCrossRefGoogle Scholar
  70. Yan, J., Liu, N., Wang, G., Zhang, W., Jiang, Y., Chen, Z. (2009). How much can behavioral targeting help online advertising? In Proceedings of the 18th international conference on World wide web (pp. 261–270). ACM.Google Scholar
  71. Yildiz Tiryaki, G., & Akbay, C. (2010). Consumers fluid milk consumption behaviors in Turkey: an application of multinomial logit model. Quality & Quantity, 44(1), 87–98.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pengyuan Wang
    • 1
    Email author
  • Eric T. Bradlow
    • 1
  • Edward I. George
    • 1
  1. 1.University of PennsylvaniaPhiladelphiaPennsylvania

Personalised recommendations