Aguirregabiria, V., & Mira, P. (2007). Sequential estimation of dynamic discrete games. Econometrica, 75(1), 1–54.
Article
Google Scholar
Bajari, P., Benkard, L., & Levin, J. (2007). Estimating dynamic models of imperfect competition. Econometrica, 75(5), 1331–1370.
Article
Google Scholar
Bajari, P., Hahn, J., Hong, H., & Ridder, G. (2008). A note on semiparametric estimation of finite mixtures of discrete choice models. Forthcoming International Economic Review.
Bajari, P., Hong, H., & Ryan, S. (2010). Identification and estimation of discrete games of complete information. Econometrica, 78(5), 1529–1568.
Article
Google Scholar
Besanko, D., & Doraszelski, U. (2004). Capacity dynamics and endogenous asymmetries in firm size. Rand Journal of Economics, 35(1), 23–49.
Article
Google Scholar
Besanko, D., Doraszelski, U., & Kryukov, Y. (2010a). The economics of predation: What drives pricing when there is learning-by-doing? Working paper, Northwestern University, Evanston.
Besanko, D., Doraszelski, U., Kryukov, Y., & Satterthwaite, M. (2010b). Learning-by-doing, organizational forgetting, and industry dynamics. Econometrica, 78(2),453–508.
Article
Google Scholar
Besanko, D., Doraszelski, U., Lu, L., & Satterthwaite, M. (2010c). Lumpy capacity investment and disinvestment dynamics. Operations Research, 58(4), 1178–1193.
Article
Google Scholar
Bischof, C., Khademi, P., Mauer, A., & Carle, A. (1996). ADIFOR 2.0: Automatic differentiation of Fortran 77 programs. IEEE Computational Science and Engineering, 3(3), 18–32.
Article
Google Scholar
Borkovsky, R. (2010). The timing of version releases in R&D-intensive industries: A dynamic duopoly model. Working paper, University of Toronto, Toronto.
Borkovsky, R., Doraszelski, U., & Kryukov, S. (2010). A user’s guide to solving dynamic stochastic games using the homotopy method. Operations Research, 58(4), 1116–1132.
Article
Google Scholar
Cabral, L., & Riordan, M. (1997). The learning curve, predation, antitrust, and welfare. Journal of Industrial Economics, 45(2), 155–169.
Article
Google Scholar
Caplin, A., & Nalebuff, B. (1991). Aggregation and imperfect competition: On the existence of equilibrium. Econometrica, 59(1), 26–59.
Google Scholar
Chen, J., Doraszelski, U., & Harrington, J. (2009). Avoiding market dominance: Product compatibility in markets with network effects. Rand Journal of Economics, 49(3), 455–485.
Article
Google Scholar
Doraszelski, U. and Escobar, J. (2010). A theory of regular markov perfect equilibria in dynamic stochastic games: Genericity, stability, and purification. Theoretical Economics, 5, 369–402.
Article
Google Scholar
Doraszelski, U., & Judd, K. (2011). Avoiding the curse of dimensionality in dynamic stochastic games. Forthcoming Quantitative Economics.
Doraszelski, U., & Markovich, S. (2007). Advertising dynamics and competitive advantage. Rand Journal of Economics, 38(3), 1–36.
Google Scholar
Doraszelski, U., & Satterthwaite, M. (2010). Computable Markov-perfect industry dynamics. Rand Journal of Economics, 41(2), 215–243.
Article
Google Scholar
Dubé, J., Hitsch, G., & Manchanda, P. (2005). An empirical model of advertising dynamics. Quantitative Marketing and Economics, 3, 107–144.
Article
Google Scholar
Ericson, R., & Pakes, A. (1995). Markov-perfect industry dynamics: A framework for empirical work. Review of Economic Studies, 62, 53–82.
Article
Google Scholar
Farias, V., Saure, D., & Weintraub, G. (2010). An approximate dynamic programming approach to solving dynamic oligopoly models. Working Paper, Columbia University, New York.
Ferris, M., Judd, K., & Schmedders, K. (2007). Solving dynamic games with Newton’s method. Working Paper, University of Wisconsin, Madison.
Fudenberg, D., & Tirole, J. (1986). A “signal-jamming” theory of predation. Rand Journal of Economics, 17(3), 366–376.
Article
Google Scholar
Goettler, R., & Gordon, B. (2011). Does AMD spur Intel to innovate more? Working paper, University of Chicago, Chicago.
Gowrisankaran, G. (1999). A dynamic model of endogenous horizontal mergers. Rand Journal of Economics, 30(1), 56–83.
Article
Google Scholar
Gowrisankaran, G., & Holmes, T. (2004). Mergers and the evolution of industry concentration: Results from the dominant firm model. Rand Journal of Economics, 35(3), 561–582.
Article
Google Scholar
Grieco, P. (2011). Discrete games with flexible information structures: An application to local grocery markets. Working Paper, Pennsylvania State University, University Park.
Herings, P., & Peeters, R. (2010). Homotopy methods to compute equilibria in game theory. Economic Theory, 42(1), 119–156.
Article
Google Scholar
Judd, K. (1998). Numerical methods in economics. Cambridge: MIT Press.
Google Scholar
Laincz, C., & Rodrigues, A. (2008). The impact of cost-reducing spillovers on the ergodic distribution of market structures. Working Paper, Drexel University, Philadelphia.
Langohr, P. (2004). Competitive convergence and divergence: Position and capability dynamics. Working Paper, Bureau of Labor Statistics, Washington, DC.
Markovich, S. (2008). Snowball: A dynamic oligopoly model with network externalities. Journal of Economic Dynamics and Control, 32, 909–938.
Article
Google Scholar
Markovich, S., & Moenius, J. (2009). Winning while losing: Competition dynamics in the presence of indirect network effects. International Journal of Industrial Organization, 27(3), 333–488.
Article
Google Scholar
McKelvey, R., McLennan, A., & Turocy, T. (2006). Gambit: Software tools for game theory. Technical Report, California Institute of Technology, Pasadena.
Milgrom, P., & Roberts, J. (1982). Predation, reputation, and entry deterrence. Journal of Economic Theory, 27, 280–312.
Article
Google Scholar
Narajabad, B., & Watson, R. (2011). The dynamics of innovation and horizontal differentiation. Journal of Economic Dynamics and Control, 35, 825–842.
Article
Google Scholar
Ordover, J., & Willig, R. (1981). An economic definition of predation: Pricing and product innovation. Yale Law Journal, 91, 8–53.
Article
Google Scholar
Pakes, A., Gowrisankaran, G., & McGuire, P. (1993). Implementing the Pakes–McGuire algorithm for computing Markov perfect equilibria in Gauss. Working Paper, Yale University, New Haven.
Pakes, A., & McGuire, P. (1994). Computing Markov-perfect Nash equilibria: Numerical implications of a dynamic differentiated product model. Rand Journal of Economics, 25(4), 555–589.
Article
Google Scholar
Pakes, A., & McGuire, P. (2001). Stochastic algorithms, symmetric Markov perfect equilibrium, and the “curse” of dimensionality. Econometrica, 69(5), 1261–1281.
Article
Google Scholar
Pakes, A., Ostrovsky, M., & Berry, S. (2007). Simple estimators for the parameters of discrete dynamic games (with entry/exit examples). Rand Journal of Economics, 38(2), 373–399.
Article
Google Scholar
Pesendorfer, M., & Schmidt-Dengler, P. (2008). Asymptotic least squares estimators for dynamic games. Review of Economic Studies, 75(3), 901–928.
Article
Google Scholar
Santos, C. (2009). Solving dynamic games by discretizing the state distribution. Working Paper, University of Alicante, Alicante.
Snider, C. (2009). Predatory incentives and predation policy: The American Airlines case. Working Paper, UCLA, Los Angeles.
Sommese, A., & Wampler, C. (2005). The numerical solution of systems of polynomials arising in engineering and science. Singapore: World Scientific Publishing.
Book
Google Scholar
Song, M. (2010). A dynamic analysis of cooperative research in the semiconductor industry. Forthcoming International Economic Review.
Verschelde, J. (1999). Algorithm 795: PHCpack: A general-purpose solver for polynomial systems by homotopy continuation. ACM Transcations on Mathematical Software, 25(2), 251–276.
Article
Google Scholar
Watson, L., Sosonkina, M., Melville, R., Morgan, A., & Walker, H. (1997). Algorithm 777: HOMPACK90: A suite of Fortran 90 codes for globally convergent homotopy algorithms. ACM Transcations on Mathematical Software, 23(4), 514–549.
Article
Google Scholar
Weintraub, G., Benkard, L., & Van Roy, B. (2010). Computational methods for oblivious equilibrium. Operations Research, 58(4), 1247–1265.
Article
Google Scholar
Zangwill, W., & Garcia, C. (1981). Pathways to solutions, fixed points, and equilibria. Englewood Cliffs: Prentice Hall.
Google Scholar