Skip to main content
Log in

Standard (kn)-threshold hierarchical quantum secret sharing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Hierarchical quantum secret sharing has important theoretical value and realistic significance in quantum secret sharing schemes. In order to expand the access structure of participants and improve the performance of schemes, this paper presents a standard (kn)-threshold hierarchical quantum secret sharing scheme. Firstly, we construct a specific pair of orthogonal entangled states and use their local distinguishable property to achieve the standard (kn)-threshold structure at each level in the hierarchy, which not only enhances the practical value of hierarchical quantum secret sharing schemes, but also reduces the computational expenses. Secondly, our scheme does not require any quantum operations to recover the secret during the reconstruction phase, which greatly reduces the quantum computational complexity. Finally, performance analysis shows that our scheme owns higher information efficiency compared with the existing schemes. Security analysis shows that our scheme is resistant to not only a series of typical external attacks but also both personal attacks from dishonest internal participants and collusion attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  2. Blakley, G.R.: Safeguarding cryptographic keys. Natl. Comput. Conf. 48, 313–317 (1979)

    Google Scholar 

  3. Massey, J.L.: Minimal codewords and secret sharing. In: Proceedings of the 6th Joint Swedish-Russian Workshop on Information Theory, pp. 276–279 (1993)

  4. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inf. Theory 29(2), 208–210 (1983)

    Article  MathSciNet  Google Scholar 

  5. Karnin, E., Greene, J., Hellman, M.: On secret sharing systems. IEEE Trans. Inf. Theory 29(1), 35–41 (1983)

    Article  MathSciNet  Google Scholar 

  6. Cheng, Y.Q., Fu, Z.X., Yu, B.: Improved visual secret sharing scheme for QR code applications. IEEE Trans. Inf. Forensics Secur. 19(9), 2393–2403 (2018)

    Article  Google Scholar 

  7. Chen, L.X., Mu, Y., Zeng, L.F., Rezaeibagha, F., Deng, R.H.: Authenticable data analytics over encrypted data in the cloud. IEEE Trans. Inf. Forensics Secur. 18, 1800–1813 (2023)

    Article  Google Scholar 

  8. Wang, Z.M., Arce, G.R.: Halftone visual cryptography via error diffusion. IEEE Trans. Inf. Forensics Secur. 4(3), 383–396 (2009)

    Article  Google Scholar 

  9. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science. ACM, pp. 124–134 (1994)

  10. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28 Annual ACM Symposium Computing. ACM, pp. 212–219 (1996)

  11. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  12. Singh, S.K., Srikanth, R.: Generalized quantum secret sharing. Phys. Rev. A 71(1), 012328 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  13. Gheorghiu, V., Sanders, B.C.: Accessing quantum secrets via local operations and classical communication. Phys. Rev. A 88(2), 022340 (2013)

    Article  ADS  Google Scholar 

  14. Qin, H.W., Zhu, X.H., Dai, Y.W.: \((t, n)\) Threshold quantum secret sharing using the phase shift operation. Quant. Inf. Process. 14(8), 2997–3004 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. Mashhadi, S.: General secret sharing based on quantum Fourier transform. Quant. Inf. Process. 14, 114 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  16. Rahaman, R., Parker, M.G.: Quantum scheme for secret sharing based on local distinguishability. Phys. Rev. A 91(2), 022330 (2015)

    Article  ADS  Google Scholar 

  17. Yang, Y.H., Gao, F., Wu, X.: Quantum secret sharing via local operations and classical communication. Sci. Rep. 5, 16967 (2015)

    Article  ADS  Google Scholar 

  18. Wang, J.T., Li, L.X., Peng, H.P., Yang, Y.X.: Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Phys. Rev. A 95(2), 022320 (2017)

    Article  ADS  Google Scholar 

  19. Bai, C.M., Li, Z.H., Xu, T.T., Li, Y.M.: Quantum secret sharing using the d-dimensional GHZ state. Quant. Inf. Process. 16(3), 59 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Bai, C.M., Li, Z.H., Liu, C.J., Li, Y.M.: Quantum secret sharing using orthogonal multiqudit entangled states. Quant. Inf. Process. 16, 304 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. Bai, C.M., Li, Z.H., Wang, J.T., Liu, C.J., Li, Y.M.: Restricted \((k, n)\)-threshold quantum secret sharing scheme based on local distinguishability of orthogonal multiqudit entangled states. Quant. Inf. Process. 17, 312 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Liu, C.J., Li, Z.H., Bai, C.M., Si, M.M.: Quantum-Secret-Sharing Scheme Based on Local Distinguishability of Orthogonal Seven-Qudit Entangled States. Int. J. Theor. Phys. 57, 428–442 (2018)

    Article  MathSciNet  Google Scholar 

  23. Bai, C.M., Zhang, S.J., Liu, L.: Quantum secret sharing for a class of special hypergraph access structures. Quant. Inf. Process. 21, 119 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  24. Wang, X.W., Xia, L.X., Wang, Z.Y., Zhang, D.Y.: Hierarchical quantum-information splitting. Opt. Commun. 283(6), 1196–1199 (2010)

    Article  ADS  Google Scholar 

  25. Xu, G., Wang, C., Yang, Y.X.: Hierarchical quantum information splitting of an arbitrary two-qubit state via the cluster state. Quant. Inf. Process. 13(1), 43–57 (2014)

    Article  ADS  Google Scholar 

  26. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Hierarchical and probabilistic quantum state sharing via a non-maximally \(|\chi \rangle \) entangled state. Chin. Phys. B 23(1), 010304 (2014)

    Article  ADS  Google Scholar 

  27. Zha, X.W., Miao, N., Wang, H.F.: Hierarchical quantum information splitting of an arbitrary two-qubit using a single quantum resource. Int. J. Theor. Phys. 58(8), 2428–2434 (2019)

    Article  MathSciNet  Google Scholar 

  28. Qin, H.W., Tang, W.K.S., Tso, R.: Hierarchical quantum secret sharing based on special high-dimensional entangled state. IEEE J. Sel. Top. Quant. Electron. 26(3), 660006 (2020)

    Article  Google Scholar 

  29. Mishra, S., Shukla, C., Pathak, A., Srikanth, R., Venu-gopalan, A.: An integrated hierarchical dynamic quantum secret sharing protocol. Int. J. Theor. Phys. 54, 3143 (2015)

    Article  Google Scholar 

  30. Lai, H., Pieprzyk, J., Pan, L.: Dynamic hierarchical quantum secret sharing based on the multiscale entanglement renormalization ansatz. Phys. Rev. A 106, 052403 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  31. Tang, J., Ma, S.Y., Li, Q.: Universal hierarchical quantum information splitting schemes of an arbitrary multi-qubit state. Int. J. Theor. Phys. 61, 209 (2022)

    Article  MathSciNet  Google Scholar 

  32. Peng, J.Y., Mo, Z.W.: Hierarchical and probabilistic quantum state sharing with a nonmaximally four-qubit cluster state. Int. J. Quant. Inf. 11(1), 1350004 (2013)

    Article  MathSciNet  Google Scholar 

  33. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  34. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22, 1049 (2005)

    Article  ADS  Google Scholar 

  35. Li, C.Y., Li, X.H., Deng, F.G., Zhou, P., Liang, Y.J., Zhou, H.Y.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23, 2896 (2006)

    Article  ADS  Google Scholar 

  36. Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21, 2097 (2004)

    Article  ADS  Google Scholar 

  37. Qin, H.W., Dai, Y.W.: Dynamic quantum secret sharing by using d-dimensional GHZ state. Quant. Inf. Process. 16, 64 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  38. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  39. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  40. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1), 23–25 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  41. Bennett, C.H., Brassard, G.: Quantum Cryptography: Public key distribution and coin tossing, In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal processing, pp. 175–179 (1984)

  42. Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 779–783 (2011)

    Article  ADS  Google Scholar 

  43. Hwang, T., Hwang, C.C., Tsai, C.W.: Quantum key distribution protocol using dense coding of three-qubit W state. Eur. Phys. J. D 61, 785–790 (2011)

    Article  ADS  Google Scholar 

  44. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376(45), 2944–2950 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. U21A20428, 61972126, 12171134).

Author information

Authors and Affiliations

Authors

Contributions

FL and QW provide initial research ideas and theoretical support and write and revise the first draft of this paper. CL is responsible for the overall design and direction of the entire research program, providing important guidance and advice during the research process, as well as comprehensive evaluation and interpretation of the research methodology and experimental results. In addition, they deeply scrutinize and evaluate the background literature and related work of the study, and comprehensively sort out and revise the overall structure and details of this paper. SZ provides a series of important information as well as financial support.

Corresponding author

Correspondence to Qingao Wu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the National Natural Science Foundation of China (Nos. U21A20428, 61972126, 12171134).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Wu, Q., Lin, C. et al. Standard (kn)-threshold hierarchical quantum secret sharing. Quantum Inf Process 23, 168 (2024). https://doi.org/10.1007/s11128-024-04378-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04378-x

Keywords

Navigation