Skip to main content
Log in

Transport distance between Grover walks on graphs and coarse Ricci curvature

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

One direction to investigate the relation between quantum walks and their underlying graphs is to define geometric quantity concerning quantum walks. In order to contribute to this direction, we define a transport distance between Grover walks, which can be seen as a quantum analogue of symmetric random walks. We employ signed optimal transport theory to formulate this distance. Also, we define coarse Ricci curvature induced by Grover walks and investigate its property. It has been found that this coarse Ricci curvature has similar properties to those of coarse Ricci curvature induced by random walks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Mohseni, M., Rebentrost, P., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129(17), 174106 (2008)

    Article  ADS  Google Scholar 

  2. Xiao, L., Zhan, X., Bian, Z., Wang, K., Zhang, X., Wang, X., Li, J., Mochizuki, K., Kim, D., Kawakami, N., et al.: Observation of topological edge states in parity-time-symmetric quantum walks. Nat. Phys. 13(11), 1117–1123 (2017)

    Article  Google Scholar 

  3. Kitagawa, T., Rudner, M.S., Berg, E., Demler, E.: Exploring topological phases with quantum walks. Phys. Rev. A 82(3), 033429 (2010)

    Article  ADS  Google Scholar 

  4. Obuse, H., Kawakami, N.: Topological phases and delocalization of quantum walks in random environments. Phys. Rev. B 84, 195139 (2011)

    Article  ADS  Google Scholar 

  5. Succi, S., Fillion-Gourdeau, F., Palpacelli, S.: Quantum lattice Boltzmann is a quantum walk. EPJ Quantum Technol. 2(1), 1–17 (2015)

    Article  Google Scholar 

  6. Apers, S., Scarlet, A.: Quantum fast-forwarding: Markov chains and graph property testing. Quantum Inf. Comput. 19(3 &4), 181–213 (2019)

    MathSciNet  Google Scholar 

  7. Apers, S., Gilyén, A., Jeffery, S.: A unified framework of quantum walk search. In: 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), vol. 187, pp. 6–1613. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021)

  8. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. Konno, N.: Quantum random walks in one dimension. Quantum Inf. Process. 1, 345–354 (2002)

    Article  MathSciNet  Google Scholar 

  10. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing. ACM (2001)

  11. Higuchi, Y., Konno, N., Sato, I., Segawa, E.: Quantum graph walks I: mapping to quantum walks. Yokohama Math. J. 59, 33–55 (2013)

    MathSciNet  Google Scholar 

  12. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 32–41 (2004)

  13. Montanaro, A.: Quantum speedup of Monte Carlo methods. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 471, no. 2181, p. 20150301 (2015)

  14. Gilyén, A., Su, Y., Low, G.H., Wiebe, N.: Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing. ACM (2019)

  15. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  16. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  17. Higuchi, Y., Konno, N., Sato, I., Segawa, E.: Spectral and asymptotic properties of Grover walks on crystal lattices. J. Funct. Anal. 267(11), 4197–4235 (2014)

    Article  MathSciNet  Google Scholar 

  18. Ni, C.C., Lin, Y.Y., Luo, F., Gao, J.: Community detection on networks with Ricci flow. Sci. Rep. 9(1), 9984 (2019)

    Article  ADS  Google Scholar 

  19. Jost, J., Liu, S.: Ollivier’s Ricci curvature, local clustering and curvature-dimension inequalities on graphs. Discrete Comput. Geom. 51(2), 300–322 (2014)

    Article  MathSciNet  Google Scholar 

  20. Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009)

    Article  MathSciNet  Google Scholar 

  21. Lin, Y., Lu, L., Yau, S.T.: Ricci curvature of graphs. Tohoku Math. J. 63(4), 605–627 (2011)

    Article  MathSciNet  Google Scholar 

  22. Yamada, T.: The Ricci curvature on directed graphs. J. Korean Math. Soc. 56(1), 113–125 (2019)

    MathSciNet  Google Scholar 

  23. Akamatsu, T.: A new transport distance and its associated Ricci curvature of hypergraphs. Anal. Geom. Metr. Spaces 10(1), 90–108 (2022)

    Article  MathSciNet  Google Scholar 

  24. Ikeda, M., Kitabeppu, Y., Takai, Y., Uehara, T.: Coarse Ricci curvature of hypergraphs and its generalization. arXiv:2102.00698 (2021)

  25. Sadowski, P., Pawela, Ł, Lewandowska, P., Kukulski, R.: Quantum walks on hypergraphs. Int. J. Theor. Phys. 58, 3382–3393 (2019)

    Article  MathSciNet  Google Scholar 

  26. Ikeda, K.: Foundation of quantum optimal transport and applications. Quantum Inf. Process. 19(1), 25 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  27. De Palma, G., Trevisan, D.: Quantum optimal transport with quantum channels. Ann. Henri Poincaré 22, 3199–3234 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  28. Carlen, E.A., Maas, J.: Non-commutative calculus, optimal transport and functional inequalities in dissipative quantum systems. J. Stat. Phys. 178(2), 319–378 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Cham (2009)

    Google Scholar 

  30. Ozawa, R., Sakurai, Y., Yamada, T.: Geometric and spectral properties of directed graphs under a lower Ricci curvature bound. Calc. Var. Partial. Differ. Equ. 59, 1–39 (2020)

    Article  MathSciNet  Google Scholar 

  31. Ohta, S.: Needle decompositions and isoperimetric inequalities in Finsler geometry. J. Math. Soc. Jpn. 70(2), 651–693 (2018)

    Article  MathSciNet  Google Scholar 

  32. Ambrosio, L., Mainini, E., Serfaty, S.: Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices. Ann. l’IHP Anal. Non linéaire 28(2), 217–246 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Tomoya Akamatsu for valuable comments. This work was supported by JSPS KAKENHI Grant Number JP22KJ1408.

Author information

Authors and Affiliations

Authors

Contributions

Y.F. provided the fundamental idea for the manuscript and wrote the manuscript text mainly. C.K. wrote the Python implementation mainly. All authors contributed to the analysis of the main statements and reviewed the manuscript.

Corresponding author

Correspondence to Yasuaki Fujitani.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujitani, Y., Kiumi, C. Transport distance between Grover walks on graphs and coarse Ricci curvature. Quantum Inf Process 23, 180 (2024). https://doi.org/10.1007/s11128-024-04373-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04373-2

Keywords

Navigation