Skip to main content
Log in

Improving the security of quantum key distribution with multi-step advantage distillation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

How to improve the key rate is an important question to analyze the security of quantum key distribution (QKD). Based on the one-step advantage distillation (OSAD), the key rate and transmission distance can be improved. In this work, we propose the multi-step advantage distillation (MSAD), which can further improve the key rate compared with OSAD. By applying MSAD, the single-photon QKD protocol and decoy-state QKD protocol are, respectively, analyzed. The analysis results demonstrate that MSAD can sharply improve the key rate under the condition of high error rate or long transmission distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on request.

References

  1. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  2. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    Article  ADS  Google Scholar 

  3. Renner, R.: Security of quantum key distribution. Int. J. Quantum Inf. 6(01), 1–127 (2008)

    Article  Google Scholar 

  4. Maurer, U.M.: Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 39(3), 733–742 (1993)

    Article  MathSciNet  Google Scholar 

  5. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  Google Scholar 

  6. Bruß, D.: Optimal eavesdropping in quantum cryptography with six states. Phys. Rev. Lett. 81(14), 3018 (1998)

    Article  ADS  Google Scholar 

  7. Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72(1), 012332 (2005)

    Article  ADS  Google Scholar 

  8. Murta, G., Rozpędek, F., Ribeiro, J., et al.: Key rates for quantum key distribution protocols with asymmetric noise. Phys. Rev. A 101(6), 062321 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. Acín, A., Bae, J., Bagan, E., et al.: Secrecy properties of quantum channels. Phys. Rev. A 73(1), 012327 (2006)

    Article  ADS  Google Scholar 

  10. Chau, H.F.: Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate. Phys. Rev. A 66(6), 060302 (2002)

    Article  ADS  Google Scholar 

  11. Tan, E.Y.Z., Lim, C.C.W., Renner, R.: Advantage distillation for device-independent quantum key distribution. Phys. Rev. Lett. 124(2), 020502 (2020)

    Article  ADS  Google Scholar 

  12. Stasiuk, M., Lutkenhaus, N., Tan, E.Y.Z.: The quantum Chernoff divergence in advantage distillation for QKD and DIQKD. arXiv:2212.06975 (2022)

  13. Lütkenhaus, N., Jahma, M.: Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. New J. Phys. 4(1), 44 (2002)

    Article  ADS  Google Scholar 

  14. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)

    Article  ADS  Google Scholar 

  15. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503 (2005)

    Article  ADS  Google Scholar 

  16. Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  17. Li, H.W., Zhang, C.M., Jiang, M.S., et al.: Improving the performance of practical decoy-state quantum key distribution with advantage distillation technology. Commun. Phys. 5(1), 53 (2022)

    Article  Google Scholar 

  18. Xu, F.H., Xu, H., Lo, H.K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89(5), 052333 (2014)

    Article  ADS  Google Scholar 

  19. Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84(19), 3762–3764 (2004)

    Article  ADS  Google Scholar 

  20. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., et al.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3(7), 481–486 (2007)

    Article  Google Scholar 

  21. Wang, R.Q., Zhang, C.M., Yin, Z.Q., et al.: Phase-matching quantum key distribution with advantage distillation. New J. Phys. 24(7), 073049 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  22. Pirandola, S., Laurenza, R., Ottaviani, C., et al.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8(1), 15043 (2017)

    Article  ADS  Google Scholar 

  23. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al.: The security of practical quantum key distribution. Rev. Modern Phys. 81(3), 1301 (2009)

    Article  ADS  Google Scholar 

  24. Li, H.W., Chen, W., Yao, Y., et al.: Security of quantum key distribution. SCIENTIA SINICA Phys. Mech. Astron. 42(11), 1237–55 (2012)

    Article  ADS  Google Scholar 

  25. Gottesman, D., Lo, H.K., Lutkenhaus, N., et al.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4(5), 325–60 (2004)

    MathSciNet  Google Scholar 

  26. Chen, Y.A., Zhang, Q., Chen, T.Y., et al.: An integrated space-to-ground quantum communication network over 4600 km. Nature 589(7841), 214–219 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSAF (Grant no. U2130205), the National Key Research and Development Program of China (Grant No. 2020YFA0309702) and the Natural Science Foundation of Henan (Grant No. 202300410532).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wei Li.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, CP., Liu, Y., Wang, Y. et al. Improving the security of quantum key distribution with multi-step advantage distillation. Quantum Inf Process 23, 148 (2024). https://doi.org/10.1007/s11128-024-04354-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04354-5

Keywords

Navigation