Skip to main content
Log in

Quantum homomorphic aggregate signature based on quantum Fourier transform

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

With the rapid development of computer and internet technology, quantum signature plays an extremely important role in modern secure communication. Quantum homomorphic aggregate signature, as an important guarantee of quantum signature, plays a significant role in reducing storage, communication, and computing costs. This article draws on the idea of quantum multi-party summation and proposes a quantum homomorphic aggregate signature scheme based on quantum Fourier transform. Our scheme uses n-particle entangled states as quantum channels, with different particles of each entangled state sent separately. This ensures secure transmission of signatures and messages with fewer entangled particles during transmission, further improving the efficiency of quantum signatures. Meanwhile, our scheme generates private keys for each participating party by randomly constructing key generation matrixes. Different signers perform quantum Fourier transforms and basis exchange operations on entangled particles based on different messages and private keys to generate signatures. In addition, the aggregator does not need to measure and verify the signature particles after receiving signatures from different signers, and the group addition operation process has additive homomorphism. Security analysis shows that our scheme has unforgeability, non-repudiation, and can resist various attacks such as entanglement measurement attacks, intercept-resend attacks, private key sequence attacks, and internal attacks by aggregator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential and linear cryptanalysis. Preprint at arXiv:1510.05836 (2015)

  2. Pirandola, S., Andersen, U.L., Banchi, L., et al.: Advances in quantum cryptography. Adv. Opt. Photonics 12(4), 1012–1236 (2020)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India 10–19(December), 175–179 (1984)

  4. Bai, C.M., Zhang, S.J., Liu, L.: Quantum secret sharing based on quantum information masking. Quantum Inf. Process. 21(11), 377 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  5. Li, F.L., Hu, H., Zhu, S.X., et al.: A verifiable (k, n)-threshold dynamic quantum secret sharing scheme. Quantum Inf. Process. 21(7), 259 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  6. Xin, X.J., Ding, L., Li, C.Y., et al.: Quantum public-key designated verifier signature. Quantum Inf. Process. 21(1), 33 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  7. Huang, X.J., Li, Z.Z., Li, Z.C., et al.: Quantum signature scheme based on secret sharing. Int. J. Theor. Phys. 61(6), 180 (2022)

    Article  MathSciNet  Google Scholar 

  8. Mor, T., Shapira, R., Shemesh, G.: Digital signatures with quantum candies. Entropy 24(2), 207 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  9. Wang, X.B., Yu, Z.W., Hu, X.L.: Twin-field quantum key distribution with large misalignment erro. Phys. Rev. A 98(6), 062323 (2018)

    Article  ADS  Google Scholar 

  10. Bera, S., Gupta, S., Majumdar, A.S.: Device-independent quantum key distribution using random quantum states. Quantum Inf. Process. 22(2), 109 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  11. Sheng, Y.B., Zhou, L., Long, G.L.: One-step quantum secure direct communication. Sci. Bull. 67(4), 367–374 (2022)

    Article  Google Scholar 

  12. Hong, Y.P., Zhou, L., Zhong, W., et al.: Measurement-device-independent three-party quantum secure direct communication. Quantum Inf. Process. 22(2), 111 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  13. Gottesman, D., Chuang, I.: Quantum digital signatures. Preprint at arXiv:quant-ph/0105032 (2001)

  14. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2001)

    Article  ADS  Google Scholar 

  15. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using bell states. Phys. Rev. A 79(5), 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Zou, X., Qiu, D.: Arbitrated quantum signature scheme using bell states. Phys. Rev. A 82(4), 042325 (2010)

    Article  ADS  Google Scholar 

  17. Yang, Y.G., Zhou, Z., Teng, Y.W., et al.: Arbitrated quantum signature with an untrusted arbitrator. Eur. Phys. J. D 61(3), 773–778 (2011)

    Article  ADS  Google Scholar 

  18. Zou, X.F., Qiu, D.W., Mateus, P.: Security analyses and improvement of arbitrated quantum signature with an untrusted arbitrator. Int. J. Theor. Phys. 52(9), 3295–3305 (2013)

    Article  MathSciNet  Google Scholar 

  19. Zhang, J.L., Zhang, J.Z., Xie, S.C.: Improvement of a quantum proxy blind signature scheme. Int. J. Theor. Phys. 57(6), 1612–1621 (2018)

    Article  MathSciNet  Google Scholar 

  20. Jiang, D.H., Hu, Q.Z., Liang, X.Q., et al.: A novel quantum multi-signature protocol based on locally indistinguishable orthogonal product states. Quantum Inf. Process. 18(9), 268 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. He, Q., Xin, X., Yang, Q.: Security analysis and improvement of a quantum multi-signature protocol. Quantum Inf. Process. 20(1), 26 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  22. Lu, D.J., Li, Z.H., Yu, J., et al.: A verifiable arbitrated quantum signature scheme based on controlled quantum teleportation. Entropy 24(1), 111 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  23. Gao, M.Z., Yang, W., Liu, Y.: A novel quantum (t, n) threshold group signature based on d-dimensional quantum system. Quantum Inf. Process. 20(9), 288 (2021)

    Article  MathSciNet  Google Scholar 

  24. Huang, Y.F., Xu, G.X., Song, X.L.: An improved efficient identity-based quantum signature scheme. Quantum Inf. Process. 22(1), 36 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  25. Deng, Z.M., Lu, D.J., Chen, T., et al.: Quantum (t, m, n) threshold group blind signature scheme with flexible number of participants. Int. J. Theor. Phys. 62, 201 (2023). https://doi.org/10.1007/s10773-023-05449-y

    Article  MathSciNet  Google Scholar 

  26. Lou, X.P., Tang, W.S., Long, H., et al.: A quantum blind signature scheme based on block encryption and quantum fourier transfer. Int. J. Theor. Phys. 58(10), 3192–3202 (2019)

    Article  MathSciNet  Google Scholar 

  27. Lou, X.P., Wang, Y., Long, H., et al.: Sequential quantum multiparty signature based on quantum fourier transform and chaotic system. IEEE Access 8, 13218–13227 (2020). https://doi.org/10.1109/ACCESS.2020.2966255

    Article  Google Scholar 

  28. Zhu, H.F., Zhang, Y.L., Li, Z.X.: Efficient quantum blind signature scheme based on quantum fourier transform. Int. J. Theor. Phys. 60(6), 2311–2321 (2021)

    Article  MathSciNet  Google Scholar 

  29. Fan, T.T., Lu, D.J., You, M.G., et al.: Multi-proxy signature scheme using five-qubit entangled state based on controlled quantum teleportation. Int. J. Theor. Phys. 61(12), 273 (2022)

    Article  MathSciNet  Google Scholar 

  30. Lin, Q., Li, J., Huang, Z.A., et al.: A short linearly homomorphic proxy signature scheme. IEEE Access 6, 12966–12972 (2018). https://doi.org/10.1109/ACCESS.2018.2809684

    Article  Google Scholar 

  31. Chang, J.Y., Ji, Y.Y., Shao, B.L., et al.: Certificateless homomorphic signature scheme for network coding. IEEE ACM Trans. Netw. 28(6), 2615–2628 (2021)

    Article  ADS  Google Scholar 

  32. Rivest, L.R.: Two signature schemes.http://people.csail.mit.edu/rivest/pubs.html (2000)

  33. Johnson, R., Molnar, D., Song, D., et al.: Homomorphic signature schemes. In: Topics in Cryptology—TRSA 2002. Springer, Berlin, 244–262 (2002)

  34. Shang, T., Zhao, X.J., Wang, C., et al.: Quantum homomorphic signature. Quantum Inf. Process. 14(1), 393–410 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  35. Luo, Q.B., Yang, G.W., She, K., et al.: Quantum homomorphic signature based on bell-state measurement. Quantum Inf. Process. 15(12), 5051–5061 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. Chen, T., Lu, D.J., Deng, Z.M., et al.: A quantum homomorphic signature scheme with verifiable identity based on four-particle cluster states. Laser Phys. Lett. 20(10), 105205 (2023)

    Article  ADS  Google Scholar 

  37. Mei, Q., Xiong, H., Chen, J.H., et al.: Efficient certificateless aggregate signature with conditional privacy preservation in iov. IEEE Syst. J. 15(1), 245–256 (2021)

    Article  ADS  Google Scholar 

  38. Hwang, Y.W., Lee, I.Y.: A lightweight certificate-based aggregate signature scheme providing key insulation. CMC-Comput. Mater. Con. 69(2), 1747–1764 (2021)

    Google Scholar 

  39. Boneh, D., Gentry, C., Lynn, B., et al.: Aggregate and verifiably encrypted signatures from bilinear maps. In: International Conference on Theory and Applications of Cryptographic Techniques (Eurocrypt 2003), Warsaw, Poland, 4–8 May 1978 (2003)

  40. You, M.G., Lu, D.J., Fan, T.T., et al.: A quantum aggregate signature scheme based on quantum teleportation using four-qubit cluster state. Int. J. Theor. Phys. 61(6), 155 (2022)

    Article  MathSciNet  Google Scholar 

  41. Cai, D.Q., Chen, X., Han, Y.H., et al.: Implementation of an e-payment security evaluation system based on quantum blind computing. Int. J. Theor. Phys. 59(9), 2757 (2020)

    Article  MathSciNet  Google Scholar 

  42. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Math. Struct. Comput. Sci. 17(6), 1115–1115 (2002)

    MathSciNet  Google Scholar 

  43. Shor, P.W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  44. Jeong, Y.C., Ji, S.W., Hong, C., et al.: Deterministic secure quantum communication on the bb84 system. Entropy 22(11), 1268 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  45. Yang, H.Y., Ye, T.Y.: Secure multi-party quantum summation based on quantum fourier transform. Quantum Inf. Process. 17(6), 129 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  46. Cabello, A.: Quantum key distribution in the holevo limit. Phys. Rev. Lett. 85(26), 5635–5638 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous reviewers for their valuable comments. This work was supported by Special Project for International Cooperation in Science and Technology of Qinghai Province. (No. 202402050039).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Teng Chen], [Dian-Jun Lu], [Zhi-Ming Deng], [Wei-Xin Yao]. The first draft of the manuscript was written by [Teng Chen], and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dian-Jun Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The representation of key generation matrixes

Appendix A: The representation of key generation matrixes

The \(B^{1}\) matrix is represented as

$$\begin{aligned} \begin{bmatrix} 40 &{}5 &{} 6 &{} 1 &{} 1 &{} 5 &{} 4 &{} 2 \\ 46 &{} 29 &{} 42 &{} 6 &{} 1 &{} 5 &{} 21 &{} 42 \\ 51 &{} 12 &{} 30 &{} 40 &{} 13 &{} 18 &{} 21 &{} 7 \\ 44 &{} 37 &{} 27 &{} 32 &{} 13 &{} 9 &{} 17 &{} 13 \\ 49 &{} 36 &{} 9 &{} 14 &{} 2 &{} 12 &{} 12 &{} 58 \\ 24 &{} 15 &{} 10 &{} 39 &{} 19 &{} 50 &{} 6 &{} 29 \\ 14 &{} 22 &{} 4 &{} 39 &{} 13 &{} 34 &{} 57 &{} 9 \\ 39 &{} 43 &{} 19 &{} 17 &{} 4 &{} 5 &{} 24 &{} 41 \\ \end{bmatrix} \end{aligned}$$
(A1)

The \(B^{2}\) matrix is represented as:

$$\begin{aligned} \begin{bmatrix} 11 &{} 2 &{} 60 &{} 27 &{} 4 &{} 33 &{} 7 &{} 48 \\ 4 &{} 17 &{} 43 &{} 33 &{} 12 &{} 17 &{} 52 &{} 14 \\ 37 &{} 36 &{} 24 &{} 42 &{} 5 &{} 32 &{} 13 &{} 3 \\ 28 &{} 53 &{} 20 &{} 13 &{} 2 &{} 5 &{} 32 &{} 39 \\ 35 &{} 4 &{} 59 &{} 34 &{} 12 &{} 35 &{} 7 &{} 6 \\ 31 &{} 60 &{} 3 &{} 4 &{} 2 &{} 5 &{} 25 &{} 62 \\ 47 &{} 24 &{} 3 &{} 61 &{} 9 &{} 28 &{} 11 &{} 9 \\ 46 &{} 10 &{} 28 &{} 64 &{} 4 &{} 11 &{} 27 &{} 2 \\ \end{bmatrix} \end{aligned}$$
(A2)

The \(B^{3}\) matrix is represented as:

$$\begin{aligned} \begin{bmatrix} 31 &{} 48 &{} 9 &{} 4 &{} 2 &{} 5 &{} 58 &{} 35 \\ 48 &{} 2 &{} 61 &{} 8 &{} 24 &{} 6 &{} 10 &{} 33 \\ 44 &{} 1 &{} 31 &{} 5 &{} 4 &{} 62 &{} 62 &{} 36 \\ 9 &{} 64 &{} 63 &{} 18 &{} 5 &{} 13 &{} 13 &{} 12 \\ 19 &{} 30 &{} 11 &{} 38 &{} 16 &{} 49 &{} 49 &{} 17 \\ 18 &{} 27 &{} 35 &{} 36 &{} 8 &{} 1 &{} 1 &{} 57 \\ 40 &{} 25 &{} 2 &{} 11 &{} 1 &{} 57 &{} 57 &{} 50 \\ 1 &{} 8 &{} 56 &{} 1 &{} 57 &{} 25 &{} 25 &{} 33 \\ \end{bmatrix} \end{aligned}$$
(A3)

The \(B^{4}\) matrix is represented as:

$$\begin{aligned} \begin{bmatrix} 42 &{} 30 &{} 21 &{} 33 &{} 62 &{} 6 &{} 1 &{} 61 \\ 16 &{} 19 &{} 28 &{} 56 &{} 62 &{} 7 &{} 19 &{} 49 \\ 64 &{} 11 &{} 22 &{} 18 &{} 39 &{} 26 &{} 54 &{} 22 \\ 43 &{} 18 &{} 24 &{} 45 &{} 31 &{} 18 &{} 40 &{} 37 \\ 64 &{} 17 &{} 6 &{} 43 &{} 57 &{} 40 &{} 1 &{} 28 \\ 56 &{} 32 &{} 22 &{} 37 &{} 26 &{} 9 &{} 64 &{} 10 \\ 38 &{} 17 &{} 49 &{} 26 &{} 26 &{} 6 &{} 50 &{} 44 \\ 48 &{} 56 &{} 10 &{} 41 &{} 11 &{} 48 &{} 12 &{} 30 \\ \end{bmatrix} \end{aligned}$$
(A4)

The \(B^{5}\) matrix is represented as:

$$\begin{aligned} \begin{bmatrix} 51 &{} 44 &{} 9 &{} 10 &{} 63 &{} 50 &{} 25 &{} 4 \\ 54 &{} 46 &{} 27 &{} 27 &{} 11 &{} 6 &{} 33 &{} 52 \\ 28 &{} 54 &{} 42 &{} 33 &{} 5 &{} 8 &{} 54 &{} 32 \\ 32 &{} 3 &{} 53 &{} 48 &{} 16 &{} 10 &{} 43 &{} 51 \\ 46 &{} 26 &{} 47 &{} 59 &{} 10 &{} 9 &{} 12 &{} 47 \\ 22 &{} 51 &{} 63 &{} 12 &{} 3 &{} 18 &{} 36 &{} 51 \\ 62 &{} 2 &{} 39 &{} 29 &{} 43 &{} 52 &{} 23 &{} 6 \\ 55 &{} 63 &{} 26 &{} 17 &{} 10 &{} 39 &{} 26 &{} 20 \\ \end{bmatrix} \end{aligned}$$
(A5)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Lu, DJ., Deng, ZM. et al. Quantum homomorphic aggregate signature based on quantum Fourier transform. Quantum Inf Process 23, 130 (2024). https://doi.org/10.1007/s11128-024-04341-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04341-w

Keywords

Navigation