Skip to main content
Log in

Quantum audio LSB steganography with entanglement-assisted modulation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper introduces two novel quantum audio steganography methods that incorporate the logical properties of entangled qubits into the least significant qubit steganography (LSQb) approach. The first method, called entanglement-assisted probability adjustment LSB (EP-LSQb), optimizes the superposition probability of the lowest qubits before embedding the information. This addresses the ‘value-pairing’ problem and improves anti-statistical analysis performance and embedding efficiency. The second method, called quantum phase direct embedding LSB (PD-LSQb), extends traditional LSB steganography by directly embedding the secret speech into the least significant qubit. Quantum circuits are constructed for both methods to demonstrate their feasibility. Theoretical analysis and simulation experiments show that these methods exhibit good imperceptibility (\({\text{PSNR}} > 50\)) and embedding efficiency. Particularly, EP-LSQb method enhances the theoretical limit of embedding efficiency when compared to its corresponding classical counterparts. Additionally, due to the inclusion of entangled qubit particles, our methods offer competitive content security and noise robustness, distinguishing them from classical LSB or general LSQb methods and highlighting the unique advantages of quantum approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Nielson, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  2. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings of 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994)

  3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In Proceedings of 28th Annual ACM Symposium on the Theory of Computing, Association for Computing Machinery, New York, NY, USA, pp. 212–219 (1996)

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In Proceedings of IEEE International Conference on Computer Systems and Signal Processing, pp. 175–179. IEEE Press, New York (1984)

  5. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(04237), 1–6 (2003)

    Google Scholar 

  7. Simmons, G.J. The prisoner’s problem and the subliminal channel. In Proceedings of CRYPTO’83, Santa Barbara, pp. 51–67 (1983)

  8. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  9. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. Sang, J., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process. 16(2), 1–14 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. Sun, B., Iliyasu, A., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inf. 17(3), 404–417 (2013)

    Article  Google Scholar 

  12. Wang, J.: QRDA: quantum representation of digital audio. Int. J. Theor. Phys. 55(3), 1622–1641 (2015)

    Article  Google Scholar 

  13. Yan, F., Iliyasu, A., Guo, Y.M., Yang, H.M.: Flexible representation and manipulation of audio signals on quantum computers. Theoret. Comput. Sci. 752, 71–85 (2018)

    Article  MathSciNet  Google Scholar 

  14. Li, P., Wang, B., Xiao, H., Liu, X.: Quantum representation and basic operations of digital signals. Int. J. Theor. Phys. 57(4), 3242–3270 (2018)

    Article  Google Scholar 

  15. Sahin, E., Yilmaz, I.: QRMA: quantum representation of multichannel audio. Quant. Inf. Process. 18(7), 1–30 (2019)

    Article  ADS  Google Scholar 

  16. Yan, F., Gao, S., Iliyasu, A.M., Chen, K.: Probability amplitude-encoded multichannel representation for quantum audio signals. Quantum Inf. Process. 21(3), 95 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  17. Wang, S., Sang, J.Z., Song, X.H., Niu, X.M.: Least significant qubit (LSQB) information hiding algorithm for quantum image. Measurement 73, 352–359 (2015)

    Article  ADS  Google Scholar 

  18. Chen, K., Yan, F., Iliyasu, A.M., Zhao, J.: Exploring the implementation of steganography protocols on quantum audio signals. Int. J. Theor. Phys. 57(2), 476–494 (2018)

    Article  MathSciNet  Google Scholar 

  19. Javad, C., Mohammad, M., Saeed, R.: A novel quantum audio steganography–steganalysis approach using LSFQ-based embedding and QKNN-based classifier. Circuits Syst. Signal Process 36(8), 3925–3957 (2020)

    Google Scholar 

  20. Zhou, R.G., Luo, J., Liu, X.A., Zhu, C.M., Wei, L., Zhang, X.F.: A novel quantum image steganography scheme based on LSB. Int. J. Theor. Phys. 57(6), 1848–1863 (2018)

    Article  MathSciNet  Google Scholar 

  21. Chen, K.H., Yan, F., Iliyasu, A.M., Zhao, J.P.: Dual quantum audio watermarking schemes based on quantum discrete cosine transform. Int. J. Theor. Phys. 58(2), 502–521 (2019)

    Article  Google Scholar 

  22. Li, P., Liu, X.: A novel quantum steganography scheme for color images. Int. J. Quantum Inf 16(2), 1850020 (2018)

    Article  ADS  Google Scholar 

  23. Wang, M.X., Yang, H.M., Jiang, D.H., Yan, B., Pan, J.S., Liu, T.: A novel quantum color image steganography algorithm based on turtle shell and LSB. Quant. Inf. Process. 21, 148 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  24. El-Latif, A.A.A., Abd-El-Atty, B., Elseuofi, S., Khalifa, H.S., Alghamdi, Ah.S., Polat, K., Amin, M.: Secret images transfer in cloud system based on investigating quantum walks in steganography approaches. Phys. A 541, 123687 (2019)

    Article  MathSciNet  Google Scholar 

  25. Qu, Z.G., Li, Z.Y., Xu, G., Wu, S.Y., Wang, X.J.: Quantum image steganography protocol based on quantum image expansion and Grover search algorithm. IEEE Access 7, 50849–50857 (2019)

    Article  Google Scholar 

  26. Qu, Z.G., Chen, S.Y., Wang, X.J.: A secure controlled quantum image steganography algorithm. Quant. Inf. Process. 19(10), 1–25 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  27. Li, Z.H., Xue, K.P., Li, J., Chen, L.T., Li, R.D., Wang, Z.Y., Yu, N.H., Wei, D.S.L., Sun, Q.B., Lu, J.: Entanglement-assisted quantum networks: mechanics, enabling technologies, challenges, and research directions. IEEE Commun. Surv. Tutor (2023). https://doi.org/10.1109/COMST.2023.3294240

    Article  Google Scholar 

  28. Bender, W., Gruhl, D., Morimoto, N., Lu, A.: Techniques for data hiding. IBM Syst. J. 35(3/4), 313–336 (1996)

    Article  Google Scholar 

  29. Zhao, X.F., Zhang, H.: Principles and Techniques of Steganography. Science Press, Beijing (2018)

    Google Scholar 

  30. Yan, F., Li, N., Hirota, K.: QHSL: A quantum hue, saturation, and lightness color model. Inf. Sci. 577(C), 196–213 (2021)

    Article  MathSciNet  Google Scholar 

  31. Li, H.S., Zhu, Q.X., Zhou, R.G., Li, M.C., Song, L., Ian, H.: Multidimensional color image storage, retrieval, and compression based on quantum amplitudes and phases. Inf. Sci. 273, 212–232 (2014)

    Article  Google Scholar 

  32. Qu, Z.G., Cheng, Z.W., Wang, X.J.: Matrix coding-based quantum image steganography algorithm. IEEE Access 7, 35684–35698 (2019)

    Article  Google Scholar 

  33. Heidari, S., Farzadnia, E.: A novel quantum LSB-based steganography method using the Gray code for colored quantum images. Quant. Inf. Process. 16, 242 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. Guan, X.W., Chen, X.B., Wang, L.C., Yang, Y.X.: Joint remote preparation of an arbitrary two-qubit state in noisy environments. Int. J. Theor. Phys. 53, 2236–2245 (2014)

    Article  Google Scholar 

  35. Westfeld, A.: F5-A steganographic algorithm. In International Workshop on Information Hiding, vol. 2137, pp. 289-302. Springer, Berlin, Heidelberg (2001)

  36. Fridrich, J., Goljan, M., Lisonek, P., Soukal, D.: Writing on wet paper. IEEE Trans. Signal Process. 53(10), 3923–3935 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  37. Filter, T., Judas, J., Fridrich, J.: Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 6(3), 920–935 (2011)

    Article  Google Scholar 

Download references

Funding

The funding was provided by National Natural Science Foundation of China (Grant No. 62171470) and Zhongyuan Science and Technology Innovation Leading Talent Project of Henan Province (Grant No. 234200510019).

Author information

Authors and Affiliations

Authors

Contributions

CH took charge of designing the quantum steganography methods and drafting the initial version of the manuscript. DQ conducted performance analysis and simulation design specifically for audio steganography. XY performed theoretical analysis on the quantum steganography performance, reviewed the initial draft, and made revisions accordingly. QM concentrated on visualizing the effects of steganography. RW and TZ were responsible for comparing quantum methods with classical methods. All authors participated in reviewing the manuscript.

Corresponding author

Correspondence to Dan Qu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, C., Yang, X., Ma, Q. et al. Quantum audio LSB steganography with entanglement-assisted modulation. Quantum Inf Process 23, 106 (2024). https://doi.org/10.1007/s11128-024-04312-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-024-04312-1

Keywords

Navigation