Skip to main content
Log in

Discrete-time quantum walk-based optimization algorithm

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Optimization is a collection of principles that are used for problem solving in a vast spectrum of disciplines. Given the specifics of a problem and a set of constraints, the objective is to find a collection of variables that minimize or maximize an objective function. We developed a novel quantum optimization algorithm based on discrete-time quantum walks that evolve under the effect of external potentials. Each discrete lattice site corresponds to a value of the objective function’s domain of definition. The objective function is expressed as the external potential that affects the quantum walks evolution. The quantum walker is able to find the global minimum by utilizing quantum superposition of the potential affected lattice sites where the evolution occurs. We tested its performance considering two use cases. First, we designed a neural network for binary classification, where we utilized the quantum walk-based optimizer to update the neurons’ weights. We compared the results with the ones of a classical optimizer, i.e., stochastic gradient descent, on four different datasets. The quantum walks-based optimization algorithm showed the ability to match the performance of the classical counterpart using less training steps, and in some cases, it was able to find near optimal weights in only one training iteration. Finally, we considered the case of hyperparameter fine-tuning where, the quantum walk-based optimizer was used to optimize the parameters of a classical machine learning model, to increase its accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the article.

References

  1. Lloyd, S., Mohseni, M. & Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning. Preprint at http://arxiv.org/abs/1307.0411 (2013)

  2. Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers. Springer (2018)

    Book  Google Scholar 

  3. Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98, 032309 (2018)

    Article  ADS  Google Scholar 

  4. Li, Y., Tian, M., Liu, G., Peng, C., Jiao, L.: Quantum optimization and quantum learning: a survey. IEEE Access 8, 23568–23593 (2020)

    Article  Google Scholar 

  5. Dunjko, V. & Briegel, H.J.: Machine learning & artificial intelligence in the quantum domain. Preprint at http://arxiv.org/abs/1709.02779 (2017)

  6. Biamonte, J., et al.: Quantum machine learning. Nature 549, 195–202 (2017)

    Article  ADS  Google Scholar 

  7. Havlicek, V., et al.: Supervised learning with quantum enhanced feature spaces. Nature 567, 209–212 (2019)

    Article  ADS  Google Scholar 

  8. Park, D.K., Blank, C., Petruccione, F.: The theory of the quantum kernel-based binary classifier. Phys. Lett. A 384, 126422 (2020)

    Article  MathSciNet  Google Scholar 

  9. Jäger, J., Krems, R.V.: Universal expressiveness of variational quantum classifiers and quantum kernels for support vector machines. Nat. Commun. 14, 576 (2023)

    Article  ADS  Google Scholar 

  10. Farhi, E., Neven, H.: Classification with Quantum Neural Networks on Near Term Processors. Preprint at https://arxiv.org/abs/1802.06002 (2018)

  11. Wan, K.H., Dahlsten, O., Kristjánsson, H., Gardner, R., Kim, M.S.: Quantum generalisation of feedforward neural networks. npj Quantum Inf 3, 36 (2017)

    Article  ADS  Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. Preprint at http://arxiv.org/abs/1412.6980 (2017)

  13. Powell, M.J.D.: A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez, S., Hennart, J.-P. (eds.) Advances in Optimization and Numerical Analysis, pp. 51–67. Springer (1994)

    Chapter  Google Scholar 

  14. Finnila, A.B., Gomez, M.A., Sebenik, C., Stenson, C., Doll, J.D.: Quantum Annealing: A New Method for Minimizing Multidimensional Functions. Preprint at https://arxiv.org/abs/chem-ph/9404003 (1994)

  15. Kadowaki, T., Nishimori, H.: Quantum Annealing in the Transverse Ising Model. Preprint at https://arxiv.org/abs/cond-mat/9804280 (1998)

  16. Gilliam, A., Woerner, S., Gonciulea, C.: Grover adaptive search for constrained polynomial binary optimization. Quantum 5, 428 (2021)

    Article  Google Scholar 

  17. Varsamis, G.D., Karafyllidis, I.G.: Computing the lowest eigenstate of tight-binding Hamiltonians using quantum walks. Int. J. Quantum Inform. 20, 2250012 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  18. Varsamis, G.D., Karafyllidis, I.G., Sirakoulis, GCh.: Hitting times of quantum and classical random walks in potential spaces. Physica A 606, 128119 (2022)

    Article  MathSciNet  Google Scholar 

  19. Varsamis, G.D., Karafyllidis, I.G., Sirakoulis, GCh.: Quantum walks in spaces with applied potentials. Eur. Phys. J. Plus 138, 312 (2023)

    Article  Google Scholar 

  20. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 180501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. Singh, S., Chawla, P., Sarkar, A., Chandrashekar, C.M.: Universal quantum computing using single-particle discrete-time quantum walk. Sci. Rep. 11, 11551 (2021)

    Article  ADS  Google Scholar 

  22. Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81, 042330 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  23. Manouchehri, K., Wang, J.: Physical Implementation of Quantum Walks. Springer, Berlin (2014)

    Book  Google Scholar 

  24. Costa, P.C.S., Portugal, R., de Melo, F.: Quantum walks via quantum cellular automata. Quantum Inf. Process. 17, 226 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  25. Karafyllidis, I.G.: Definition and evolution of quantum cellular automata with two qubits per cell. Phys. Rev. A 70, 044301 (2004)

    Article  ADS  Google Scholar 

  26. Huerta Alderete, C., et al.: Quantum walks and Dirac cellular automata on a programmable trapped-ion quantum computer. Nat. Commun. 11, 3720 (2020)

    Article  ADS  Google Scholar 

  27. Loke, T., Wang, J.B.: Efficient circuit implementation of quantum walks on non-degree-regular graphs. Phys. Rev. A 86, 042338 (2012)

    Article  ADS  Google Scholar 

  28. Douglas, B.L., Wang, J.B.: Efficient quantum circuit implementation of quantum walks. Phys. Rev. A 79, 052335 (2009)

    Article  ADS  Google Scholar 

  29. Acasiete, F., Agostini, F.P., Moqadam, J.K., Portugal, R.: Implementation of quantum walks on IBM quantum computers. Quantum Inf. Process. 19, 426 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. Liu, Y., Su, W.J., Li, T.: On quantum speedups for nonconvex optimization via quantum tunneling walks. Quantum 7, 1030 (2023)

    Article  Google Scholar 

  31. Scikit-learn: machine learning in Python—Scikit-learn 1.2.2 documentation. https://scikit-learn.org/stable

  32. Chui, C.K., Li, X.: Approximation by ridge functions and neural networks with one hidden layer. J. Approx. Theory 70, 131–141 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  33. Ruder, S.: An overview of gradient descent optimization algorithms. Preprint at https://arxiv.org/abs/1609.04747 (2016)

  34. EY Open Science Data Challenge 2023 https://challenge.ey.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios D. Varsamis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liliopoulos, I., Varsamis, G.D. & Karafyllidis, I.G. Discrete-time quantum walk-based optimization algorithm. Quantum Inf Process 23, 23 (2024). https://doi.org/10.1007/s11128-023-04234-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04234-4

Keywords

Navigation