Skip to main content
Log in

Machine learning with neural networks for parameter optimization in twin-field quantum key distribution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Twin-field quantum key distribution (TF-QKD) has the advantage of beating the rate-loss limit (PLOB bound) for a repeaterless quantum key distribution (QKD) system. In practice, parameter optimization is of great significance in maximizing the secret key rate. Nevertheless, traditional local search algorithms (LSA) are often time-consuming and limited by the computing capabilities of devices. In this paper, we use the machine learning method instead of LSA to directly predict the optimal parameters for TF-QKD system. Specifically, three neural networks, namely back propagation neural network, radial basis function neural network, and generalized regression neural network, are trained and evaluated. The performance of neural networks and LSA in optimizing parameters is discussed and analyzed in this study. It is proved that the performance of machine learning-based prediction method is comparable to LSA, but the calculation time is shortened by 6 orders of magnitude. Furthermore, a comprehensive comparison of three networks in terms of prediction accuracy and time consumption is conducted, serving as a guide for selecting the most suitable network to optimize parameters in a practical TF-QKD system with different optimization requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. Lo, H.-K., Chau, H.-F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    ADS  Google Scholar 

  2. Shor, P.-W., Preskill, J.: Simple proof of security of the bb84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441 (2000)

    ADS  Google Scholar 

  3. Scarani, V., Helle, B.-P., Cerf, N.-J., Dušek, M., Lütkenhaus, N., Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    ADS  Google Scholar 

  4. Brassard, G., Bennett, C.-H.: Quantum cryptography: public key distribution and coin tossing, pp. 75–179 (1984)

  5. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    ADS  Google Scholar 

  6. Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photonics 8(8), 595–604 (2014)

    ADS  Google Scholar 

  7. Ribeiro, J., Murta, G., Wehner, S.: Fully device-independent conference key agreement. Phys. Rev. A 97(2), 022307 (2018)

    ADS  Google Scholar 

  8. Yin, H.-L., Chen, T.-Y., Yu, Z.-W., Liu, H., You, L.-X., Zhou, Y.-H., Chen, S.-J., Mao, Y.-Q., Huang, M.-Q., Zhang, W.-J., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)

    ADS  Google Scholar 

  9. Boaron, A., Boso, G., Rusca, D., Vulliez, C., Autebert, C., Caloz, M., Perrenoud, M., Gras, G., Bussières, F., Li, M.-J., et al.: Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121(19), 190502 (2018)

    ADS  Google Scholar 

  10. Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)

    ADS  Google Scholar 

  11. Lo, H.-K., Ma, X.-F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    ADS  Google Scholar 

  12. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503 (2005)

    ADS  Google Scholar 

  13. Hayashi, M.: General theory for decoy-state quantum key distribution with an arbitrary number of intensities. New J. Phys. 9(8), 284 (2007)

    ADS  Google Scholar 

  14. Hayashi, M.: Optimal decoy intensity for decoy quantum key distribution. New J. Phys. 49(16), 165301 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Ma, X.-F., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72(1), 012326 (2005)

    ADS  Google Scholar 

  16. Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107(11), 110501 (2011)

    ADS  Google Scholar 

  17. Zhou, Y.-H., Yu, Z.-W., Wang, X.-B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93(4), 042324 (2016)

    ADS  Google Scholar 

  18. da Silva, T.F., Vitoreti, D., Xavier, G.-B., do Amaral, G.-C., Temporão, G.-P., von der Weid, J.-P.: Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Phys. Rev. A 88(5), 052303 (2013)

    ADS  Google Scholar 

  19. Lucamarini, M., Yuan, Z.-L., Dynes, J.-F., Shields, A.-J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature 557(7705), 1476–4687 (2018)

    Google Scholar 

  20. Federico Grasselli, M.-C.: Practical decoy-state method for twin-field quantum key distribution. New J. Phys. 21, 073001 (2019)

    MathSciNet  Google Scholar 

  21. Cui, C.-H., Yin, Z.-Q., Wang, R., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Twin-field quantum key distribution without phase postselection. Phys. Rev. Appl. 11(3), 034053 (2019)

    ADS  Google Scholar 

  22. Maeda, K., Sasaki, T., Koashi, M.: Repeaterless quantum key distribution with efficient finite-key analysis overcoming the rate-distance limit. Nat. Commun. 10(1), 1723–2041 (2019)

    Google Scholar 

  23. Ma, X.-F., Zeng, P., Zhou, H.-Y.: Phase-matching quantum key distribution. Phys. Rev. X 8(3), 031043 (2018)

    Google Scholar 

  24. Wang, X.-B., Yu, Z.-W., Hu, X.-L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98(6), 062323 (2018)

    ADS  Google Scholar 

  25. Xie, Y.-M., Lu, Y.-S., Weng, C.-X., Cao, X.-Y., Jia, Z.-Y., Bao, Y., Wang, Y., Fu, Y., Yin, H.-L., Chen, Z.-B.: Breaking the rate-loss bound of quantum key distribution with asynchronous two-photon interference. PRX Quantum 3(2), 020315 (2022)

    ADS  Google Scholar 

  26. Cui, W., Song, Z., Huang, G.-Q., Jiao, R.-Z.: Satellite-based phase-matching quantum key distribution. Quantum Inf. Process. 21, 313 (2022)

    ADS  MATH  Google Scholar 

  27. Park, J.-Y., Lee, J.-Y., Heo, J.: Improved statistical fluctuation analysis for twin-field quantum key distribution. Quantum Inf. Process. 20, 127 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Zhou, X.-Y., Zhang, C.-H., Zhang, C.-M., Wang, Q.: Asymmetric sending or not sending twin-field quantum key distribution in practice. Phys. Rev. A 99(6), 062316 (2019)

    ADS  Google Scholar 

  29. Lu, Y.-F., Wang, Y., Jiang, M.-S., Liu, F., Zhang, X.-X., Bao, W.-S.: Finite-key analysis of sending-or-not-sending twin-field quantum key distribution with intensity fluctuations. Quantum Inf. Process. 20(135), 1332–1573 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Wang, Y., Bao, W.-S., Zhou, C., Jiang, M.-S., Li, H.-W.: Tight finite-key analysis of a practical decoy-state quantum key distribution with unstable sources. Phys. Rev. A 94(8), 032335 (2016)

    ADS  Google Scholar 

  31. Wang, Y., Bao, W.-S., Li, H.-W., Zhou, C., Li, Y.: Finite-key analysis for one-sided device-independent quantum key distribution. Phys. Rev. A 88(6), 052322 (2013)

    ADS  Google Scholar 

  32. Park, J., Heo, J.: Finite-key-size effect in asymmetric twin-field quantum key distribution, pp. 265–267 (2021)

  33. Tsurumaru, T., Soujaeff, A., Takeuchi, S.: Exact minimum and maximum of yield with a finite number of decoy light intensities. Phys. Rev. A 77(2), 022319 (2008)

    ADS  MATH  Google Scholar 

  34. Grasselli, F., Kampermann, H., Bruß, D.: Finite-key effects in multipartite quantum key distribution protocols. New J. Phys. 20(11), 113014 (2018)

    ADS  Google Scholar 

  35. Xu, F.-H., Xu, H., Lo, H.-K.: Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution. Phys. Rev. A 89(5), 052333 (2014)

    ADS  Google Scholar 

  36. Liu, J.-Y., Ding, H.-J., Zhang, C.-M., Xie, S.-P., Wang, Q.: Practical phase-modulation stabilization in quantum key distribution via machine learning. Phys. Rev. Appl. 12(1), 014059 (2019)

    ADS  Google Scholar 

  37. Wang, W.-Y., Lo, H.-K.: Simple method for asymmetric twin-field quantum key distribution. New J. Phys. 22(1), 013020 (2020)

    ADS  MathSciNet  Google Scholar 

  38. Kwek, L.-C., Cao, L., Luo, W., Wang, Y.-X., Sun, S.-H., Wang, X.-B., Liu, A.-Q.: Chip-based quantum key distribution. AAPPS Bull. 31, 15 (2021)

    ADS  Google Scholar 

  39. Lu, F.-Y., Yin, Z.-Q., Wang, C., Cui, C.-H., Teng, J., Wang, S., Chen, W., Huang, W., Xu, B.-J., Guo, G.-C., et al.: Parameter optimization and real-time calibration of a measurement-device-independent quantum key distribution network based on a back propagation artificial neural network. JOSA B 36(3), 92–98 (2019)

    Google Scholar 

  40. Lu, W.-Z., Huang, C.-H., Hou, K., Shi, L.-T., Zhao, H.-H., Li, Z.-M., Qiu, J.-F.: Recurrent neural network approach to quantum signal: coherent state restoration for continuous-variable quantum key distribution. Quantum Inf. Process. 17(5), 1–14 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Liu, W.-Q., Huang, P., Peng, J.-Y., Fan, J.-P., Zeng, G.-H.: Integrating machine learning to achieve an automatic parameter prediction for practical continuous-variable quantum key distribution. Phys. Rev. A 97(2), 022316 (2018)

    ADS  Google Scholar 

  42. Wang, W.-Y., Lo, H.-K.: Machine learning for optimal parameter prediction in quantum key distribution. Phys. Rev. A 100(6), 062334 (2019)

    ADS  Google Scholar 

  43. Qin, L., Gang, X., Hai, Z., Ying, G.: Multi-label learning for improving discretely-modulated continuous-variable quantum key distribution. New J. Phys. 22(8), 083086 (2020)

    Google Scholar 

  44. Ding, H.-J., Liu, J.-Y., Zhang, C.-M., Wang, Q.: Predicting optimal parameters with random forest for quantum key distribution. Quantum Inf. Process. 19(60), 1332–1573 (2020)

    MathSciNet  MATH  Google Scholar 

  45. Ren, Z.-A., Chen, Y.-P., Liu, J.-Y., Ding, H.-J., Wang, Q.: Implementation of machine learning in quantum key distributions. IEEE Commun. Lett. 25(3), 940–944 (2021)

    Google Scholar 

  46. Grasselli, F., Navarrete, Á., Curty, M.: Asymmetric twin-field quantum key distribution. New J. Phys. 21(11), 113032 (2019)

    ADS  MathSciNet  Google Scholar 

  47. Liu, Y., Yu, Z.-W., Zhang, W.-J., Guan, J.-Y., Chen, J.-P., Zhang, C., Hu, X.-L., Li, H., Jiang, C., Lin, J., Chen, T.-Y., You, L.-X., Wang, Z., Wang, X.-B., Zhang, Q., Pan, J.-W.: Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett. 123(10), 100505 (2019)

    ADS  Google Scholar 

  48. Minder, M., Pittaluga, M., Roberts, G.-L., Lucamarini, M., Dynes, J., Yuan, Z., Shields, A.-J.: Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photonics 13(5), 334–338 (2019)

    ADS  Google Scholar 

  49. Wang, S., He, D.-Y., Yin, Z.-Q., Lu, F.-Y., Cui, C.-H., Chen, W., Zhou, Z., Guo, G.-C., Han, Z.-F.: Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Phys. Rev. X 9(2), 021046 (2019)

    Google Scholar 

  50. Rumelhart, D.-E., Hinton, G.-E., Williams, R.-J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    ADS  MATH  Google Scholar 

  51. Yang, S.-Y., Kwon, O., Park, Y., Chung, H., Kim, H., Park, S.-Y., Choi, I.-G., Yeo, H.: Application of neural networks for classifying softwood species using near infrared spectroscopy. J. Near Infrared Spectrosc. 28(5), 298–307 (2020)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by China Postdoctoral Science Foundation (Grant No. 221628) and Foundation of Shaanxi Province Education Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Hui Zhang.

Ethics declarations

Conflict of interest

The authors do not have any possible conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, JL., Zhang, MH., Liu, XP. et al. Machine learning with neural networks for parameter optimization in twin-field quantum key distribution. Quantum Inf Process 22, 309 (2023). https://doi.org/10.1007/s11128-023-04063-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04063-5

Keywords

Navigation