Skip to main content
Log in

Quantum and semi-quantum lottery: strategies and advantages

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Lottery is a game in which multiple players take chances in the hope of getting some rewards in cash or kind. In addition, from the time of the early civilizations, lottery has also been considered as an apposite method to allocate scarce resources. Technically, any scheme for lottery needs to be fair and secure, but none of the classical schemes for lottery are unconditionally secure and fair. As fairness demands complete unpredictability of the outcome of the lottery, it essentially requires perfect randomness. Quantum mechanics not only guarantees the generation of perfect randomness, it can also provide unconditional security. Motivated by these facts, a set of strategies for performing lottery using different type of quantum resources (e.g., single photon states, and entangled states) are proposed here, and it’s established that the proposed strategies lead to unconditionally secure and fair lottery schemes. A scheme for semi-quantum lottery that allows some classical users to participate in the lottery involving quantum resources is also proposed and the merits and demerits of all the proposed schemes are critically analysed. It is also established that the level of security is intrinsically related to the type of quantum resources being utilized. Further, it is shown that the proposed schemes can be experimentally realized using currently available technology, and that may herald a new era of commercial lottery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. \(\vert \psi ^{\pm } \rangle = \frac{1}{\sqrt{2}} \{ \vert 01 \rangle \pm \vert 10 \rangle \}\) and \(\vert \phi ^{\pm } \rangle = \frac{1}{\sqrt{2}} \{ \vert 00 \rangle \pm \vert 11 \rangle \}\)

References

  1. Blanche, E.E.: Lotteries yesterday, today, and tomorrow. Ann. Am. Acad. Polit. Soc. Sci. 269(1), 71–76 (1950)

    Google Scholar 

  2. Rubner, A.: The Economics of Gambling. Macmillan, London (1966)

    Google Scholar 

  3. Ball, P.S.: Gambling in Elizabethan England: perspectives on England’s ‘Lotterie Generall’ of 1567–69. Ph.D. thesis, University of Tasmania (2018)

  4. Boyce, J.R.: Allocation of goods by lottery. Econ. Inquiry 32(3), 457–476 (1994)

    Google Scholar 

  5. Shaddy, F., Shah, A.K.: When to use markets, lines, and lotteries: how beliefs about preferences shape beliefs about allocation. J. Mark. 86(3), 140–156 (2021)

    Google Scholar 

  6. Stone, P.: Why lotteries are just. J. Polit. Philos. 15(3), 276–295 (2007)

    ADS  Google Scholar 

  7. Saunders, B.: The equality of lotteries. Philosophy 83(3), 359–372 (2008)

    Google Scholar 

  8. Eckhoff, T.: Lotteries in allocative situations. Soc. Sci. Inf. 28(1), 5–22 (1989)

    Google Scholar 

  9. Waldspurger, C.A.: Lottery and stride scheduling: flexible proportional-share resource management. Ph.D. thesis, Massachusetts Institute of Technology (1995)

  10. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. In: International Conference on Learning Representations (2019)

  11. Liu, M., Choy, V., Clarke, P., Barnett, A., Blakely, T., Pomeroy, L.: The acceptability of using a lottery to allocate research funding: a survey of applicants. Res. Integr. Peer Rev. 5, 3 (2020)

    Google Scholar 

  12. Fang, F.C., Casadevall, A.: Grant funding: playing the odds. Science 352(6282), 158–158 (2016)

    ADS  Google Scholar 

  13. Adam, D.: Science funders gamble on grant lotteries. Nature 575(7785), 574–575 (2019)

    ADS  Google Scholar 

  14. Charles, H.B., Brassard, G: Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computer System and Signal Processing, Vol. 1984, pp. 175–179. IEEE (1984)

  15. Shenoy-Hejamadi, A., Pathak, A., Radhakrishna, S.: Quantum cryptography: key distribution and beyond. Quanta 6(1), 1–47 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)

    ADS  MATH  Google Scholar 

  17. Feihu, X., Ma, X., Zhang, Q., Lo, H.-K., Pan, J.-W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92(2), 025002 (2020)

    ADS  MathSciNet  Google Scholar 

  18. Brassard, G., Crépeau, C., Jozsa, R., Langlois, D.: A quantum bit commitment scheme provably unbreakable by both parties. In: Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science, pp 362–371. IEEE (1993)

  19. Hoi-Kwong, L., Chau, H.F.: Is quantum bit commitment really possible? Phys. Rev. Lett. 78(17), 3410–3413 (1997)

    ADS  Google Scholar 

  20. Mayers, D.: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78(17), 3414–3417 (1997)

    ADS  Google Scholar 

  21. Naseri, M.: Secure quantum sealed-bid auction. Opt. Commun. 282(9), 1939–1943 (2009)

    ADS  Google Scholar 

  22. Hogg, T., Harsha, P., Chen, K.-Y.: Quantum auctions. Int. J. Quantum Inf. 5(05), 751–780 (2007)

    MATH  Google Scholar 

  23. Hillery, M., Ziman, M., Bužek, V., Bieliková, M.: Towards quantum-based privacy and voting. Phys. Lett. A 349(1–4), 75–81 (2006)

    ADS  MATH  Google Scholar 

  24. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)

    ADS  Google Scholar 

  25. Thapliyal, K., Sharma, R.D., Pathak, A.: Protocols for quantum binary voting. Int. J. Quantum Inf. 15(01), 1750007 (2017)

    MATH  Google Scholar 

  26. Mishra, S., Thapliyal, K., Parakh, A., Pathak, A.: Quantum anonymous veto: a set of new protocols. EPJ Quantum Technol. 9(1), 14 (2022)

    Google Scholar 

  27. Colbeck, R. Quantum and relativistic protocols for secure multi-party computation. Ph.D. thesis, University of Cambridge. arXiv:0911.3814 (2009)

  28. Danilov, V.I., Lambert-Mogiliansky, A., Vergopoulos, V.: Dynamic consistency of expected utility under non-classical (quantum) uncertainty. Theory Decis. 84(4), 645–670 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Sun, X., Kulicki, P., Sopek, M.: Lottery and auction on quantum blockchain. Entropy 22(12), 1377 (2020)

    ADS  MathSciNet  Google Scholar 

  30. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (2018)

    MATH  Google Scholar 

  31. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Feihu, X., Ma, X., Zhang, Q., Lo, H.-K., Pan, J.-W.: Secure quantum key distribution with realistic devices. Rev. Mod. Phys. 92(2), 025002 (2020)

    ADS  MathSciNet  Google Scholar 

  33. Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., Englund, D., Gehring, T., Lupo, C., Ottaviani, C., et al.: Advances in quantum cryptography. Adv. Opt. Photonics 12(4), 1012–1236 (2020)

    ADS  Google Scholar 

  34. Bera, M.N., Acín, A., Kuś, M., et al.: Randomness in quantum mechanics: philosophy, physics and technology. Rep. Prog. Phys. 80(12), 124001 (2017)

    ADS  MathSciNet  Google Scholar 

  35. How to Turn a Quantum Computer Into the Ultimate Randomness Generator \(\vert \) Quanta Magazine, Jun 2019. [Online]. Accessed 28 Feb 2022

  36. Mannalath, V., Mishra, S., Pathak, A.: A comprehensive review of quantum random number generators: concepts, classification and the origin of randomness. arXiv:2203.00261 (2022)

  37. Jacak, M.M., Jóźwiak, P., Niemczuk, J., Jacak, J.E.: Quantum generators of random numbers. Sci. Rep. 11(1), 16108 (2021)

    ADS  Google Scholar 

  38. Herrero-Collantes, M., Garcia-Escartin, J.C.: Quantum random number generators. Rev. Mod. Phys. 89(1), 015004 (2017)

    ADS  MathSciNet  Google Scholar 

  39. Ma, X., Yuan, X., Cao, Z., et al.: Quantum random number generation. NPJ Quantum Inf. 2(16021), 1–9 (2016)

    Google Scholar 

  40. ID Quantique. Quantis qrng (quantum random number generator)—id quantique. https://www.idquantique.com/random-number-generation/products. Accessed 25 Feb 2022

  41. Toshiba. https://www.toshiba.eu/pages/eu/Cambridge-Research-Laboratory/quantum-random-number-generators. Accessed 25 Feb 2022

  42. PicoQuant. Quantum random number generator | picoquant. https://www.picoquant.com/scientific/product-studies/pqrng-150-product-study. Accessed 25 Feb 2022

  43. MPD. Micro photon devices—quantum random number. http://www.micro-photon-devices.com/Docs/Datasheet/QRNG.pdf. Accessed 25 Feb 2022

  44. Nielsen, M.A., Chuang, I.L.: Quantum Computing and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  45. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  46. Pathak, A., Banerjee, A.: Optical Quantum Information and Quantum Communication. SPIE, Bellingham (2016)

    Google Scholar 

  47. Wallden, P., Dunjko, V., Kent, A., Andersson, E.: Quantum digital signatures with quantum-key-distribution components. Phys. Rev. A 91(4), 042304 (2015)

    ADS  Google Scholar 

  48. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full sha-1. In: Annual International Cryptology Conference, pp. 17–36. Springer (2005)

  49. Lenstra, A., Wang, X., de Weger, B.: Colliding x. 509 certificates. Cryptology ePrint Archive (2005)

  50. Wang, X., Feng, D., Lai, X., Yu, H.: Collisions for hash functions md4, md5, haval-128 and ripemd. Cryptology EPrint Archive (2004)

  51. Yu, H., Wang, G., Zhang, G., Wang, X.: The second-preimage attack on md4. In: International Conference on Cryptology and Network Security, pp. 1–12. Springer (2005)

  52. Wang, X., Yu, H.: How to break md5 and other hash functions. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 19–35. Springer (2005)

  53. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions md4 and ripemd. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 1–18. Springer (2005)

  54. Guo, G.-P., Guo, G.-C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  55. Hsu, L.-Y., Li, C.-M.: Quantum secret sharing using product states. Phys. Rev. A 71(2), 022321 (2005)

    ADS  Google Scholar 

  56. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, Booz-allen and hamilton inc mclean va (2001)

  57. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)

    ADS  Google Scholar 

  58. Yin, H.-L., Chen, T.-Y., Zong-Wen, Yu., Liu, H., You, L.-X., Zhou, Y.-H., Chen, S.-J., Mao, Y., Huang, M.-Q., Zhang, W.-J., et al.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)

    ADS  Google Scholar 

  59. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  60. Zhang, Z., Li, Y., Man, Z.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  61. Xiao, L., Long, G.L., Deng, F.-G., Pan, J.-W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    ADS  Google Scholar 

  62. Zhang, Z., Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)

    ADS  MathSciNet  Google Scholar 

  63. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors’’ Bell experiment via entanglement swapping. Phys. Rev. Lett. 71(26), 4287–4290 (1993)

    ADS  Google Scholar 

  64. Ji, Z., Fan, P., Zhang, H.: Entanglement swapping for bell states and Greenberger–Horne–Zeilinger states in qubit systems. Phys. A Stat. Mech. Appl. 585, 126400 (2022)

    MathSciNet  MATH  Google Scholar 

  65. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  66. Zou, X., Qiu, D., Li, L., Lihua, W., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)

    ADS  Google Scholar 

  67. Kun-Fei, Yu., Yang, C.-W., Liao, C.-H., Hwang, T.: Authenticated semi-quantum key distribution protocol using bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  68. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16(12), 1–19 (2017)

    MathSciNet  MATH  Google Scholar 

  69. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)

    ADS  Google Scholar 

  70. Liao, S.-K., Cai, W.-Q., Liu, W.-Y., Zhang, L., Li, Y., Ren, J.-G., Yin, J., Shen, Q., Cao, Y., Li, Z.-P., et al.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43–47 (2017)

    ADS  Google Scholar 

  71. Janotta, P., Hinrichsen, H.: Generalized probability theories: what determines the structure of quantum theory? J. Phys. A Math. Theor. 47(32), 323001 (2014)

    MathSciNet  MATH  Google Scholar 

  72. Barrett, J.: Information processing in generalized probabilistic theories. Phys. Rev. A 75(3), 032304 (2007)

    ADS  Google Scholar 

  73. Aravinda, S., Pathak, A., Srikanth, R.: Hierarchical axioms for quantum mechanics. Eur. Phys. J. D 73(9), 207 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

Authors thank Kishore Thapliyal and Abhishek Parakh for their feedback and interest in this work. Further, the authors acknowledge that this study is supported by the project “Partnership 2020: Leveraging US-India Cooperation in Higher Education to Harness Economic Opportunities and Innovation” which is enabling a collaboration between University of Nebraska at Omaha, and JIIT, Noida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Ethics declarations

Conflict of interest

The authors state that they have not known competing financial interests or personal connections that may seem to have influenced the work described in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Pathak, A. Quantum and semi-quantum lottery: strategies and advantages. Quantum Inf Process 22, 290 (2023). https://doi.org/10.1007/s11128-023-04041-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04041-x

Keywords

Navigation