Skip to main content
Log in

Tunable bandpass routers of single photons with three-level emitters

  • Regular Article
  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Frequency selectivity of routing signals in quantum channels is of great significance for a quantum optical network. We have proposed a novel tunable bandpass router constructed by two waveguides linked mediately via a driven three-level emitter. The routing properties in the output port are investigated theoretically by using the real-space Hamiltonian. Numerical results show that the continuous central frequencies on demand of routing photons can be manipulated almost linearly by tuning the driving field, and high routing efficiencies of resonance transmission can be achieved via reflection feedback. The proposed routing system could be exploited potentially in designing other quantum optical devices and quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availibility

All data and material considered in this paper are included in this published article.

Code Availability

The authors have used MATLAB 2016a as software applications.

References

  1. Goban, A., Hung, C.L., Yu, S.P., Hood, J.D., Muniz, J.A., Lee, J.H., Martin, M.J., McClung, A.C., Choi, K.S., Chang, D.E., Painter, O., Kimble, H.J.: Atom-light interactions in photonic crystals. Nat. Commun. 5, 3808 (2014)

    ADS  Google Scholar 

  2. Zhou, L., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101(10), 100501 (2008)

    ADS  Google Scholar 

  3. Shen, J.T., Fan, S.: Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30(15), 2001–2003 (2005)

    ADS  Google Scholar 

  4. Shen, J.T., Fan, S.: Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett. 95(21), 213001 (2005)

    ADS  Google Scholar 

  5. Chang, D.E., Sørensen, A.S., Demler, E.A., Lukin, M.D.: A single-photon transistor using nano-scale surface plasmons. Nat. Phys. 3, 807–812 (2007)

    Google Scholar 

  6. Shen, J.T., Fan, S.: Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A 79(2), 023837 (2009)

    ADS  Google Scholar 

  7. Shen, J.T., Fan, S.: Theory of single-photon transport in a single-mode waveguide. II. Coupling to a whispering-gallery resonator containing a two-level atom. Phys. Rev. A 79(2), 023838 (2009)

    ADS  Google Scholar 

  8. Tsoi, T.S., Law, C.K.: Single-photon scattering on \(\Lambda \)-type three-level atoms in a one-dimensional waveguide. Phys. Rev. A 80(3), 033823 (2009)

    ADS  Google Scholar 

  9. Witthaut, D., Sørensen, A.S.: Photon scattering by a three-level emitter in a one-dimensional waveguide. New J. Phys. 12, 043052 (2010)

    ADS  MATH  Google Scholar 

  10. Chen, W., Chen, G.Y., Chen, Y.N.: Coherent transport of nanowire surface plasmons coupled to quantum dots. Opt. Express 18(10), 10360 (2010)

    ADS  Google Scholar 

  11. Huang, J.F., Shi, T., Sun, C.P., Nori, F.: Controlling single-photon transport in waveguides with finite cross section. Phys. Rev. A 88(1), 013836 (2013)

    ADS  Google Scholar 

  12. Gu, X., Kockum, A.F., Miranowicz, A., Liu, Y., Nori, F.: Microwave photonics with superconducting quantum circuits. Phys. Rep. 718–719, 1 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Jiang, Q., Hu, Q., Zou, B., Zhang, Y.: Single microwave photon switch controlled by an external electrostatic field. Phys. Rev. A 98(2), 023830 (2018)

    ADS  Google Scholar 

  14. Yan, W.B., Ni, W.Y., Zhang, J., Zhang, F.Y., Fan, H.: Tunable single-photon diode by chiral quantum physics. Phys. Rev. A 98(4), 043852 (2018)

    ADS  Google Scholar 

  15. Dong, J.H., Jiang, Q., Hu, Q.M., Zou, B.S., Zhang, Y.Y.: Transport and entanglement for single photons in optical waveguide ladders. Phys. Rev. A 100(1), 013840 (2019)

    ADS  Google Scholar 

  16. Masson, S.J., Asenjo-Garcia, A.: Atomic-waveguide quantum electrodynamics. Phys. Rev. Res. 2(4), 043213 (2020)

    Google Scholar 

  17. Wang, X., Shui, T., Li, L., Li, X., Wu, Z., Yang, W.X.: Tunable single-photon diode and circulator via chiral waveguide-emitter couplings. Las. Phys. Lett. 17, 065201 (2020)

    ADS  Google Scholar 

  18. Kannan, B., Ruckriegel, M.J., Campbell, D.L., Kockum, A.F., et al.: Waveguide quantum electrodynamics with superconducting artificial giant atoms. Nature 583, 775–779 (2020)

    ADS  Google Scholar 

  19. Kimble, H.J.: The quantum internet. Nature (London) 453, 1023–1030 (2008)

    ADS  Google Scholar 

  20. Shomroni, I., Rosenblum, S., Lovsky, Y., Brechler, O., Guendelman, G., Dayan, B.: All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 345(6199), 903–906 (2014)

    ADS  Google Scholar 

  21. Li, X.M., Wei, L.F.: Designable single-photon quantum routings with atomic mirrors. Phys. Rev. A 92(6), 063836 (2015)

    ADS  Google Scholar 

  22. Huang, J.S., Zhong, J.T., Li, Y.L., Xu, Z.H., Xiao, Q.S.: Efficient single-photon routing in a double-waveguide system with a mirror. Quantum Inf. Process. 19, 290 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Wu, J.N., Dong, J., Xu, Y., Zou, B., Zhang, Y.: Multichannel adjustable single-photon router based on large detuning. Phys. Rev. Appl. 18(5), 054007 (2022)

    ADS  Google Scholar 

  24. Zhao, Y.J., Tan, N., Yu, D., Liu, B., Liu, W.M.: Tunable quantum switcher and router of single atoms using localized artificial magnetic fields. Phys. Rev. Res. 2, 033484 (2020)

    Google Scholar 

  25. Zhou, L., Yang, L.P., Li, Y., Sun, C.P.: Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett. 111(10), 103604 (2013)

    ADS  Google Scholar 

  26. Lu, J., Wang, Z.H., Zhou, L.: T-shaped single-photon router. Opt. Express 23(18), 22955 (2015)

    ADS  Google Scholar 

  27. Liu, L., Lu, J.: T-bulge-shaped quantum router. Quantum Inf. Process. 16, 29 (2017)

    ADS  MATH  Google Scholar 

  28. Zhang, J.H., He, D.Y., Luo, G.Y., Wang, B.D., Huang, J.S.: Bidirectional highly-efficient quantum routing in a T-bulge-shaped waveguide. Chin. Phys. B 30(3), 034204 (2021)

    ADS  Google Scholar 

  29. Huang, J.S., Wang, J.W., Wang, Y., Li, Y.L., Huang, Y.W.: Control of single-photon routing in a T-shaped waveguide by another atom. Quantum Inf. Process. 17, 78 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Huang, J.S., Wang, J.W., Li, Y.L., Wang, Y., Huang, Y.W.: Tunable quantum routing via asymmetric intercavity couplings. Quantum Inf. Process. 18, 59 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Aoki, T., Parkins, A.S., Alton, D.J., Regal, C.A., Dayan, B., Ostby, E., Vahala, K.J., Kimble, H.J.: Efficient routing of single photons with one atom and a microtoroidal cavity. Phys. Rev. Lett. 102(8), 083601 (2009)

    ADS  Google Scholar 

  32. Hoi, I.C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107(7), 073601 (2011)

    ADS  Google Scholar 

  33. Agarwal, G.S., Huang, S.: Optomechanical systems as single-photon routers. Phys. Rev. A 85(2), 021801 (2012)

    ADS  Google Scholar 

  34. Li, X., Zhang, W.Z., Xiong, B., Zhou, L.: Single-photon multi-ports router based on the coupled cavity optomechanical system. Sci. Rep. 6, 39343 (2016)

    ADS  Google Scholar 

  35. Hu, C.Y.: Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity. Sci. Rep. 7, 45582 (2017)

    ADS  Google Scholar 

  36. Kim, N.C., Ko, M.C., Ryom, J.S., Choe, H., Choe, I.H., Ri, S.R., Kim, S.G.: Single plasmon router with two quantum dots side coupled to two plasmonic waveguides with a junction. Quantum Inf. Process. 20, 5 (2021)

    ADS  Google Scholar 

  37. Ko, M.C., Kim, N.C., Choe, H., Ri, S.R., Ryom, J.S., Ri, C.W., Kim, U.H.: Feasible surface plasmon routing based on the self-assembled InGaAs/GaAs semiconductor quantum dot located between two silver metallic waveguides. Plasmonics 15, 271–277 (2020)

    Google Scholar 

  38. Kim, N.C., Kim, C.M., Kim, M.C., Ryom, J.S., Ri, G.Y., Ryom, G.M., Kim, Y.J.: Multiport quantum routing with four quantum dots placed at the junctions of ladder-type plasmonic waveguide. Quantum Inf. Process. 22, 21 (2023)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Gonzalez-Ballestero, C., Moreno, E., Garcia-Vidal, F.J., Gonzalez-Tudela, A.: Nonreciprocal few-photon routing schemes based on chiral waveguide-emitter couplings. Phys. Rev. A 94(6), 063817 (2016)

    ADS  Google Scholar 

  40. Cheng, M.T., Ma, X.S., Zhang, J.Y., Wang, B.: Single photon transport in two waveguides chirally coupled by a quantum emitter. Opt. Express 24(17), 19988–19993 (2016)

    ADS  Google Scholar 

  41. Yan, C.H., Li, Y., Yuan, H., Wei, L.F.: Targeted photonic routers with chiral photon-atom interactions. Phys. Rev. A 97(2), 023821 (2018)

    ADS  Google Scholar 

  42. Yan, G.A., Cai, Q.Y., Chen, A.X.: Information-holding quantum router of single photons using natural atom. Eur. Phys. J. D 70, 93 (2016)

    ADS  Google Scholar 

  43. Yan, G.A., Qiao, H.X., Lu, H., Chen, A.X.: Quantum information-holding single-photon router based on spontaneous emission. Sci. China Phys. Mech. Astron. 60(9), 090311 (2017)

    ADS  Google Scholar 

  44. Yuan, X.X., Ma, J.J., Hou, P.Y., Chang, X.Y., Zu, C., Duan, L.M.: Experimental demonstration of a quantum router. Sci. Rep. 5, 12452 (2015)

    ADS  Google Scholar 

  45. Bartkiewicz, K., Černoch, A., Lemr, K.: Using quantum routers to implement quantum message authen-tication and Bell-state manipulation. Phys. Rev. A 90(2), 022335 (2014)

    ADS  Google Scholar 

  46. Khani, S., Danaie, M., Rezaei, P.: Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Opt. Commun. 420, 147–156 (2018)

    ADS  Google Scholar 

  47. Khani, S., Danaie, M., Rezaei, P.: Design of a single-mode plasmonic bandpass filter using a hexagonal resonator coupled to graded-stub waveguides. Plasmonics 14(1), 53–62 (2019)

    Google Scholar 

  48. Ren, L., Yuan, S., Zhu, S., Shi, L., Zhang, X.: Tunable kilohertz microwave photonic bandpass filter based on backscattering in a microresonator. Opt. Lett. 47(17), 4572–4575 (2022)

    ADS  Google Scholar 

  49. Zhang, B., Chen, N., Lu, X., Hu, Y., Yang, Z., Zhang, X., Xu, J.: Bandwidth tunable optical bandpass filter based on parity-time symmetry. Micromachines 13(1), 89 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11864014) and by the Natural Science Foundation of Jiangxi Province (Grant Nos. 20212BAB201014, 20212ACB211004, and 20224BAB201023).

Author information

Authors and Affiliations

Authors

Contributions

JSH is the project manager. He designed the model and contributed to preparation of the manuscript. XMF and KYW performed theoretical and numerical calculations. ZHX and YLL checked the correctness of the calculations and analyzed the results obtained.

Corresponding author

Correspondence to Jin-Song Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The submitted work is original and has not been published elsewhere in any form or language (partially or in full).

Consent to participate

All authors consent to participate.

Consent for publication

All authors consent to participate.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, JS., Feng, XM., Xu, ZH. et al. Tunable bandpass routers of single photons with three-level emitters. Quantum Inf Process 22, 285 (2023). https://doi.org/10.1007/s11128-023-04039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04039-5

Keywords

Navigation