Skip to main content
Log in

Fast quantum cloning of \(1\rightarrow n \) orbital state with Rydberg superatom

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose an efficient scheme for realizing the \(1\rightarrow n\) orbital state quantum cloning by using Rydberg superatoms. We place an ultracold Rydberg atomic ensemble which contains n individual ladder type Rydberg atoms inside the blocking ball to form a superatom, the quantum information is encoded the effective energy levels of superatom. Combined with quantum Zeno dynamics and shortcuts to adiabaticity, the \(1\rightarrow 3\) orbital state quantum cloning process can be quickly completed. Moreover, we generalize the idea to the case of \(1\rightarrow n\). At last, the influence of decoherence factors on fidelity is considered. The numerical simulation results show that high fidelity can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    ADS  MATH  Google Scholar 

  2. Dieks, D.: Communication by EPR devices. Phys. Lett. A 92, 271–272 (1982)

    ADS  Google Scholar 

  3. Bužek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Lett. A 54, 1844 (1996)

    MathSciNet  Google Scholar 

  4. Duan, L.M., Guo, G.C.: Probabilistic cloning and identification of linearly independent quantum states. Phys. Rev. Lett. 80, 4999–5002 (1998)

    ADS  Google Scholar 

  5. Bruß, D., Cinchetti, M., Mauro, D’Ariano, G., Macchiavello, C.: Phase-covariant quantum cloning. Phys. Rev. A 62, 012302 (2000)

  6. Navez, P., Cerf, N.J.: Cloning a real d-dimensional quantum state on the edge of the no-signaling condition. Phys. Rev. A 68, 032313 (2003)

    ADS  Google Scholar 

  7. Gisin, N., Massar, S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153 (1997)

    ADS  Google Scholar 

  8. Werner, R.F.: Optimal cloning of pure states. Phys. Rev. A 58, 1827 (1998)

    ADS  Google Scholar 

  9. Rezakhani, A., Siadatnejad, S., Ghaderi, A.: Separability in asymmetric phase-covariant cloning. Phys. Lett. A 336, 278 (2005)

    ADS  MATH  Google Scholar 

  10. Fan, H., Matsumoto, K., Wang, X.B., Wadati, M.: Quantum cloning machines for equatorial qubits. Phys. Rev. A 65, 012304 (2001)

    ADS  Google Scholar 

  11. Buscemi, F., D’Ariano, G.M., Macchiavello, C.: Economical phase-covariant cloning of qudits. Phys. Rev. A 71, 042327 (2005)

    ADS  Google Scholar 

  12. Shao, X.Q., Wang, H.F., Chen, L., Zhang, S., Zhao, Y.F., Yeon, K.H.: One-step implementation of the 1 \(\rightarrow \) 3 orbital state quantum cloning machine via quantum Zeno dynamics. Phys. Rev. A 80, 062323 (2009)

    ADS  Google Scholar 

  13. Ji, Y.Q., Yu, T., Zhu, A.D., Wang, H.F., Zhang, S., Yeon, K.H., Yu, S.C.: Realization of optimal symmetric universal and phase-covariant quantum cloning with quantum dot spins in cavity QED. J. Mod. Opt. 59, 1272 (2012)

    ADS  Google Scholar 

  14. Zhu, A.D., Yeon, K.H., Yu, S.C.: Optimal universal and phase-covariant quantum cloning machines with quantum-dot spins in cavity QED. J. Phys. B At. Mol. Opt. Phys. 42, 235501 (2009)

    ADS  Google Scholar 

  15. Ji, Y.Q., Wen, J.J., Wang, Y.L., Zhu, A.D., Wang, H.F., Zhang, S., Yeon, K.H.: Deterministic quantum logic gates and quantum cloning based on quantum dot-cavity coupled system. Opt. Commun. 303, 56–61 (2013)

    ADS  Google Scholar 

  16. Chen, H., Zhou, X., Suter, D., Du, J.: Experimental realization of 1 \(\rightarrow \) 2 asymmetric phase-covariant quantum cloning. Phys. Rev. A 75, 012317 (2007)

    ADS  Google Scholar 

  17. Cummins, H.K., Jones, C., Furze, A., Soffe, N.F., Mosca, M., Peach, J.M., Jones, J.A.: Approximate quantum cloning with nuclear magnetic resonance. Phys. Rev. Lett. 88, 187901 (2002)

    ADS  Google Scholar 

  18. Fan, H., Weihs, G., Matsumoto, K., Imai, H.: Cloning of symmetric d-level photonic states in physical systems. Phys. Rev. A 66, 024307 (2002)

    ADS  Google Scholar 

  19. Fasel, S., Gisin, N., Ribordy, G., Scarani, V., Zbinden, H.: Quantum cloning with an optical fiber amplifier. Phys. Rev. Lett. 89, 107901 (2002)

    ADS  Google Scholar 

  20. Sabuncu, M., Andersen, U.L., Leuchs, G.: Experimental demonstration of continuous variable cloning with phase-conjugate inputs. Phys. Rev. Lett. 98, 170503 (2007)

    ADS  Google Scholar 

  21. Sciarrino, F., De Martini, F.: Realization of the optimal phase-covariant quantum cloning machine. Phys. Rev. A 72, 062313 (2005)

    ADS  Google Scholar 

  22. Lin, J.Z.: Fast implementation of the orbital state quantum cloning machine. Laser Phys. Lett. 15, 055202 (2018)

    ADS  Google Scholar 

  23. Guo, G.C., Zhang, Y.S.: Scheme for preparation of the W state via cavity quantum electrodynamics. Phys. Rev. A 65, 054302 (2002)

    ADS  Google Scholar 

  24. Deng, Z.J., Feng, M., Gao, K.L.: Simple scheme for generating an n-qubit W state in cavity QED. Phys. Rev. A 73, 014302 (2006)

    ADS  Google Scholar 

  25. Zhang, X.L., Gao, K.L., Feng, M.: Preparation of cluster states and W states with superconducting quantum-interference-device qubits in cavity QED. Phys. Rev. A 74, 024303 (2006)

    ADS  Google Scholar 

  26. Deng, Z.J., Gao, K.L., Feng, M.: Generation of N-qubit W states with rf SQUID qubits by adiabatic passage. Phys. Rev. A 74, 064303 (2006)

    ADS  Google Scholar 

  27. Song, K.H., Xiang, S.H., Liu, Q., Lu, D.H.: Quantum computation and W-state generation using superconducting flux qubits coupled to a cavity without geometric and dynamical manipulation. Phys. Rev. A 75, 032347 (2007)

    ADS  Google Scholar 

  28. Facchi, P., Gorini, V., Marmo, G., Pascazio, S., Sudarshan, E.: Quantum zeno dynamics. Phys. Lett. A 275, 12–19 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A., Kasevich, M.A.: Interaction-free measurement. Phys. Rev. Lett. 74, 4763 (1995)

    ADS  Google Scholar 

  30. Facchi, P., Pascazio, S.: Quantum Zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  31. Wang, X.B., You, J.Q., Nori, F.: Quantum entanglement via two-qubit quantum Zeno dynamics. Phys. Rev. A 77, 062339 (2008)

    ADS  Google Scholar 

  32. Ji, Y.Q., Shao, X.Q., Yi, X.X.: Fusing atomic W states via quantum Zeno dynamics. Sci. Rep. 7, 1378 (2017)

    ADS  Google Scholar 

  33. Franson, J.D., Jacobs, B.C., Pittman, T.B.: Quantum computing using single photons and the Zeno effect. Phys. Rev. A 70, 062302 (2004)

    ADS  Google Scholar 

  34. Huang, Y.P., Moore, M.G.: Interaction-and measurement-free quantum Zeno gates for universal computation with single-atom and single-photon qubits. Phys. Rev. A 77, 062332 (2008)

    ADS  Google Scholar 

  35. Shao, X.Q., Wu, J.H., Yi, X.X.: Dissipation-based entanglement via quantum Zeno dynamics and Rydberg antiblockade. Phys. Rev. A 95, 062339 (2017)

    ADS  Google Scholar 

  36. Chen, M.F., Chen, Y.F., Ma, S.S.: One-step implementation of a Toffoli gate of separated superconducting qubits via quantum Zeno dynamics. Quantum Inf. Process. 15, 1469 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Liang, Y., Su, S.L., Wu, Q.C., Ji, X., Zhang, S.: Adiabatic passage for three-dimensional entanglement generation through quantum Zeno dynamics. Opt. Express 23, 5064 (2015)

    ADS  Google Scholar 

  38. Shao, X.Q., Wu, J.H., Yi, X.X., Long, G.L.: Dissipative preparation of steady Greenberger–Horne–Zeilinger states for Rydberg atoms with quantum Zeno dynamics. Phys. Rev. A 96, 062315 (2017)

    ADS  Google Scholar 

  39. Myers, C.R., Gilchrist, A.: Photon-loss-tolerant Zeno controlled-sign gate. Phys. Rev. A 75, 052339 (2007)

    ADS  Google Scholar 

  40. Su, W.J., Yang, Z.B., Wu, H.Z.: Quantum state transfer and conditional phase gate via off-resonant quantum Zeno dynamics. Opt. Commun. 383, 101 (2017)

    ADS  Google Scholar 

  41. Beige, A., Braun, D., Tregenna, B., Knight, P.L.: Quantum computing using dissipation to remain in a decoherence-free subspace. Phys. Rev. Lett. 85, 1762 (2000)

    ADS  Google Scholar 

  42. Shao, X.Q., Zheng, T.Y., Zhang, S.: Scalable implementation of ancilla-free optimal 1 \(\rightarrow \) M phase-covariant quantum cloning by combining quantum Zeno dynamics and adiabatic passage. Phys. Lett. A 375, 3504–3508 (2011)

    ADS  MATH  Google Scholar 

  43. Liang, Y., Ji, X., Wang, H.F., Zhang, S.: Deterministic SWAP gate using shortcuts to adiabatic passage. Laser Phys. Lett. 12, 115201 (2015)

    ADS  Google Scholar 

  44. Saffman, M., Walker, T.G., Mølmer, K.: Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010)

    ADS  Google Scholar 

  45. Löw, R., Weimer, H., Nipper, J., Balewski, J.B., Butscher, B., Büchler, H.P., Pfau, T.: An experimental and theoretical guide to strongly interacting Rydberg gases. J. Phys. B At. Mol. Opt. Phys. 45, 113001 (2012)

  46. Vogt, T., Viteau, M., Zhao, J., Chotia, A., Comparat, D., Pillet, P.: Dipole blockade at Förster resonances in high resolution laser excitation of Rydberg states of cesium atoms. Phys. Rev. Lett. 97, 083003 (2006)

    ADS  Google Scholar 

  47. Tong, D., Farooqi, S.M., Stanojevic, J., Krishnan, S., Zhang, Y.P., Côté, R.: Local blockade of Rydberg excitation in an ultracold gas. Phys. Rev. Lett. 93, 063001 (2004)

    ADS  Google Scholar 

  48. Honer, J., Löw, R., Weimer, H., Pfau, T., Büchler, H.P.: Artificial atoms can do more than atoms: deterministic single photon subtraction from arbitrary light fields. Phys. Rev. Lett. 107, 093601 (2011)

    ADS  Google Scholar 

  49. Jaksch, D., Cirac, J.I., Zoller, P., Rolston, S.L., Côté, R., Lukin, M.D.: Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85, 2208–2211 (2000)

    ADS  Google Scholar 

  50. Singer, k., Reetz-Lamour, M., Amthor, T., Marcassa, L.G., Weidemüller, M.: Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms. Phys. Rev. Lett 93, 163001 (2004)

  51. Dauphin, A., Müller, M., Martin-Delgado, M.A.: Rydberg-atom quantum simulation and Chern-number characterization of a topological Mott insulator. Phys. Rev. A 86, 053618 (2012)

    ADS  Google Scholar 

  52. Weimer, H., Müller, M., Lesanovsky, I., Zoller, P., Büchler, H.P.: A Rydberg quantum simulator. Nat. Phys. 6, 382–388 (2010)

    Google Scholar 

  53. Nguyen, T.L., Raimond, J.M., Sayrin, C., Cortinas, R., Cantatmoltrecht, T., Assemat, F., Dotsenko, I., Gleyzes, S., Haroche, S., Roux, G., Jolicoeur, T., Brune, M.: Towards quantum simulation with circular Rydberg atoms. Phys. Rev. X 8, 011032 (2018)

    Google Scholar 

  54. Su, S.L., Gao, Y., Liang, E.J., Zhang, S.: Fast Rydberg antiblockade regime and its applications in quantum logic gates. Phys. Rev. A 95, 022319 (2017)

    ADS  Google Scholar 

  55. Su, S.L., Guo, F.Q., Tian, L., Zhu, X.Y., Yan, L.L., Liang, E.J., Feng, M.: Nondestructive Rydberg parity meter and its applications. Phys. Rev. A 101, 012347 (2020)

    ADS  Google Scholar 

  56. Maller, K.M., Lichtman, M.T., Xia, T., Sun, Y., Piotrowicz, M.J., Carr, A.W., Isenhower, L., Saffman, M.: Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits. Phys. Rev. A 92, 022336 (2015)

    ADS  Google Scholar 

  57. Su, S.L.: Rydberg quantum controlled-phase gate with one control and multiple target qubits. Chin. Phys. B 27, 401–407 (2018)

    Google Scholar 

  58. Su, S.L., Shen, H.Z., Liang, E.J., Zhang, S.: One-step construction of the multiple-qubit Rydberg controlled-phase gate. Phys. Rev. A 98, 032306 (2018)

    ADS  Google Scholar 

  59. Brion, E., Pedersen, L.H., Saffman, M., Mølmer, K.: Error correction in ensemble registers for quantum repeaters and quantum computers. Phys. Rev. Lett. 100, 110506 (2008)

    ADS  Google Scholar 

  60. Han, Y., He, B., Heshami, K., Li, C.Z., Simon, C.: Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles. Phys. Rev. A 81, 052311 (2010)

    ADS  Google Scholar 

  61. Wilk, T., Gaëtan, A., Evellin, C., Wolters, J., Miroshnychenko, Y., Grangie, P., Browaeys, A.: Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010)

    ADS  Google Scholar 

  62. Zhang, X.L., Isenhower, L., Gill, A.T., Walker, T.G., Saffman, M.: Fidelity of a Rydberg-blockade quantum gate from simulated quantum process tomography. Phys. Rev. A 82, 030306 (2010)

    ADS  Google Scholar 

  63. Ji, Y.Q., Liu, Y.L., Li, H., Zhou, X.J., Xiao, R.J., Dong, L., Xiu, X.M.: Fast preparation of Bell state and W state with Rydberg superatom. Quantum Inf. Process. 9, 421 (2020)

    ADS  MathSciNet  Google Scholar 

  64. Colombe, Y., Steinmetz, T., Dubois, G., Linke, F., Hunger, D., Reichel, J.: Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007)

    ADS  Google Scholar 

  65. Pritchard, J.D., Maxwell, D., Gauguet, A., Weatherill, K.J., Jones, M.P.A., Adams, C.S.: Cooperative atom-light interaction in a blockaded Rydberg ensemble. Phys. Rev. Lett. 105, 193603 (2010)

    ADS  Google Scholar 

  66. Shao, X.Q., Wang, H.F., Chen, L., Zhang, S., Zhao, Y.F., Yeon, K.H.: Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics. New J. Phys. 12, 023040 (2010)

    ADS  Google Scholar 

  67. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A 89, 033856 (2014)

    ADS  Google Scholar 

  68. Shao, X.Q., Wu, J.H., Yi, X.X., Long, G.L.: Dissipative preparation of steady Greenberger–Horne–Zeilinger states for Rydberg atoms with quantum Zeno dynamics. Phys. Rev. A 96, 062315 (2017)

    ADS  Google Scholar 

  69. Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D., Muga, J.G.: Shortcut to adiabatic passage in two-and three-level atoms. Phys. Rev. Lett. 105, 123003 (2010)

    ADS  Google Scholar 

  70. Berry, M.V.: Transitionless quantum driving. J. Phys. A Math. Theor. 42, 365303 (2009)

    MathSciNet  MATH  Google Scholar 

  71. Paris-Mandoki, A., Braun, C., Kumlin, J., Tresp, C., Mirgorodskiy, I., Christaller, F., Büchler, H.P., Hofferberth, S.: Free-space quantum electrodynamics with a single Rydberg superatom. Phys. Rev. X 7, 041010 (2017)

    Google Scholar 

  72. Isenhower, L., Urban, E., Zhang, X.L., Gill, A.T., Henage, T., Johnson, T.A., Walker, T.G., Saffman, M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104, 010503 (2010)

    ADS  Google Scholar 

  73. Guerlin, C., Brion, E., Esslinger, T., Mølmer, K.: Cavity quantum electrodynamics with a Rydberg-blocked atomic ensemble. Phys. Rev. A 82, 053832 (2010)

    ADS  Google Scholar 

  74. Zhang, X.F., Sun, Q., Wen, Y.C., Liu, W.M., Eggert, S., Ji, A.C.: Rydberg polaritons in a cavity: a superradiant solid. Phys. Rev. Lett. 110, 090402 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 11947078, 11674037), the Program of the Educational Office of LiaoNing Province of China (Grant Nos. LJKZ1015, LJ2020005), the Natural Science Foundation of LiaoNing Province (Grant Nos. 2020-BS-234, 2021-MS-317), the Program of Liaoning BaiQianWan Talents Program (Grant No. 2021921096), the LiaoNing Revitalization Talents Program (Grant No. XLYC1807206) and the Natural Science Foundation of Jilin Province (Grant No. YDZJ202201ZYTS324)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Q. Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W.Y., He, S., Shao, Q.P. et al. Fast quantum cloning of \(1\rightarrow n \) orbital state with Rydberg superatom. Quantum Inf Process 22, 307 (2023). https://doi.org/10.1007/s11128-023-04038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04038-6

Keywords

Navigation