Skip to main content
Log in

An effective way of characterizing the quantum nonlocality

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Nonlocality is a distinctive feature of quantum theory, which has been extensively studied for decades. It is found that the uncertainty principle determines the nonlocality of quantum mechanics. Here we show that various degrees of nonlocalities in correlated system can be characterized by the generalized uncertainty principle, by which the complementarity is attributed to the mutual dependence of observables. Concrete examples for different kinds of nonclassical phenomena pertaining to different orders of dependence are presented. We obtain the third-order “skewness nonlocality” and find that the Bell nonlocality turns out to be merely the second-order “variance nonlocality” and the fourth-order dependence contains the commutator squares, which hence is related to the quantum contextuality. More applications of the generalized uncertainty principle are expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927)

    Article  ADS  MATH  Google Scholar 

  2. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  3. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  4. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  ADS  MATH  Google Scholar 

  5. Cirel’son, B.S.: Quantum generalization of Bell’s inequality. Lett. Math. Phys. 4, 93–100 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  6. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24, 379–385 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  7. van Dam, W.: Implausible consequences of superstrong nonlocality. arXiv:quant-ph/0501159

  8. Buhrman, H., Cleve, R., Massar, S., de Wolf, R.: Nonlocality and communication complexity. Rev. Mod. Phys. 82, 665–698 (2010)

    Article  ADS  Google Scholar 

  9. Pawłowski, M., Paterek, T., Kaszlikowski, D., Scarani, V., Winter, A., Żukowski, M.: Information causality as a physical principle. Nature 461, 1101–1104 (2009)

    Article  ADS  Google Scholar 

  10. Rohrlich, D.: PR-box correlations have no classical limit. In: Struppa, D.C., Tollaksen, J.M. (eds.) Quantum Theory: A Two-Time Success Story (Yakir Aharonov Festschrift), pp. 205–211. Springer, New York (2013)

    Google Scholar 

  11. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    MathSciNet  MATH  Google Scholar 

  12. Cabello, A.: Bell non-locality and Kochen–Specker contextuality: how are they connected? arXiv:1904.05306

  13. Araújo, M., Quintino, M.T., Budroni, C., Cunha, M.T., Cabello, A.: All noncontextuality inequalities for the n-cycle scenario. Phys. Rev. A 88, 022118 (2013)

    Article  ADS  Google Scholar 

  14. Khrennikov, A.: Contextuality versus incompatibility: searching for physical meaning of contextuality peeled off incompatibility. arXiv:2005.05124

  15. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Howard, M., Wallman, J., Veitch, V., Emerson, J.: Contextuality supplies the ‘magic’ for quantum computation. Nature (London) 510, 351–355 (2014)

    Article  ADS  Google Scholar 

  17. Oppenheim, J., Wehner, S.: The uncertainty principle determines the nonlocality of quantum mechanics. Science 330, 1072–1074 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Li, J.-L., Qiao, C.-F.: The generalized uncertainty principle. Ann. Phys. (Berl.) 335, 2000335 (2021)

    Article  MathSciNet  Google Scholar 

  19. Fulton, W.: Eigenvalues, invariant factors, highest weights, and Schubert calculus. Bull. Am. Math. Soc. 37, 209–249 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, J.-L., Qiao, C.-F.: A necessary and sufficient criterion for the separability of quantum state. Sci. Rep. 8, 1442 (2018)

    Article  ADS  Google Scholar 

  21. Li, J.-L., Qiao, C.-F.: The optimal uncertainty relations. Ann. Phys. (Berl.) 531, 1900143 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  22. Pusey, M.F.: Negativity and steering: a stronger Peres conjecture. Phys. Rev. A 88, 032313 (2013)

    Article  ADS  Google Scholar 

  23. Li, J.-L., Qiao, C.-F.: Characterizing quantum nonlocalities per uncertainty relation. Quantum Inf. Process. 20, 109 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Leggett, A.J.: Nonlocal hidden-variable theories and quantum mechanics: an incompatible theorem. Found. Phys. 33, 1469–1493 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  25. Stuart, A., Ord, J.K.: Kendall’s Advanced Theory of Statistics, Vol 1: Distribution Theory, 6th edn. Wiley, Weinheim (2010)

    Google Scholar 

  26. Fine, A.: Hidden variables, joint probability, and the Bell inequalities. Phys. Rev. Lett. 48, 291–295 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  27. Landau, L.J.: On the violation of Bell’s inequality in quantum theory. Phys. Lett. A 120, 54–56 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  28. Egozcue, M., García, L.F., Wong, W.-K., Zitikis, R.: The smallest upper bound for the \(p\)th absolute central moment of a class of random variables. Math. Sci. 37, 125–131 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Mermin, N.D.: Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65, 803–815 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  30. Jahnke, V.: Recent developments in the holographic description of quantum chaos. Adv. High Energy Phys. 9632708 (2019)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (NSFC) under the Grants 11975236 and 12235008 and by the University of Chinese Academy of Sciences (Grant No. E1E40206X2).

Author information

Authors and Affiliations

Authors

Contributions

All authors have equally contributed to the main result, the examples and the writing. All authors have given approval for the final version of the manuscript.

Corresponding author

Correspondence to Cong-Feng Qiao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 236 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, MC., Li, JL. & Qiao, CF. An effective way of characterizing the quantum nonlocality. Quantum Inf Process 22, 242 (2023). https://doi.org/10.1007/s11128-023-04003-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-04003-3

Keywords

Navigation