Skip to main content
Log in

Routing a quantum state in a bio-inspired network

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We consider a spin network resembling an \(\alpha \)-helix structure and study quantum information transfer over this bio-inspired network. The model we use is the Davydov model in its elementary version without a phononic environment. We investigate analytically and numerically the perfect state transfer (PST) in such a network which provides an upper bound on the probability of quantum states transfer from one node to another. We study PST for different boundary conditions on the network and show it is reachable between certain nodes and with suitable spin–spin couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All relevant data have been included in the paper.

References

  1. Caruso, F., Giovannetti, V., Lupo, C., Mancini, S.: Quantum channels and memory effects. Rev. Mod. Phys. 86, 1203 (2014)

    Article  ADS  Google Scholar 

  2. Yoshida, B., Yao, N.Y.: Disentangling scrambling and decoherence via quantum teleportation. Phys. Rev. X 9, 011006 (2019)

    Google Scholar 

  3. Valivarthi, R., et al.: Teleportation systems toward a quantum internet. PRX Quantum 1, 020317 (2020)

    Article  ADS  Google Scholar 

  4. Gisin, N., Thew, R.: Quantum communication. Nat. Photon. 1, 165 (2007)

    Article  ADS  Google Scholar 

  5. Ladd, T.D., et al.: Quantum computers. Nature 464, 45 (2010)

    Article  ADS  Google Scholar 

  6. Pirandola, S., et al.: Advances in quantum teleportation. Nat. Photon. 9, 641 (2015)

    Article  ADS  Google Scholar 

  7. Hou, P.-Y., et al.: Quantum teleportation from light beams to vibrational states of a macroscopic diamond. Nat. Commun. 7, 11736 (2016)

    Article  ADS  Google Scholar 

  8. Lloyd, S., et al.: Closed timelike curves via postselection: theory and experimental test of consistency. Phys. Rev. Lett. 106, 040403 (2011)

    Article  ADS  Google Scholar 

  9. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  10. Jafarizadeh, M.A., Sufiani, R.: Perfect state transfer over distance-regular spin networks. Phys. Rev. A 77, 022315 (2008)

    Article  ADS  Google Scholar 

  11. Casaccino, A., Lloyd, S., Mancini, S., Severini, S.: Quantum state transfer through a qubit network with energy shifts and fluctuations. Int. J. Quantum Inf. 07, 1417 (2009)

    Article  MATH  Google Scholar 

  12. Vafafard, A., Nourmandipour, A., Franzosi, R.: Multipartite stationary entanglement generation in the presence of dipole-dipole interaction in an optical cavity. Phys. Rev. A 105, 052439 (2022)

    Article  ADS  Google Scholar 

  13. Marais, A., et al.: The future of quantum biology. Interface 15, 20180640 (2018)

    Google Scholar 

  14. Fisher, M.P.: Quantum cognition: the possibility of processing with nuclear spins in the brain. Ann. Phys. 362, 593 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Engel, G.S.: Quantum coherence in photosynthesis. Procedia Chem. 3, 222 (2011)

    Article  Google Scholar 

  16. Ritz, T., et al.: Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429, 177 (2004)

    Article  ADS  Google Scholar 

  17. Olaya-Castro, A., Nazir, A., Fleming, G.R.: Quantum-coherent energy transfer: implications for biology and new energy technologies. Philos. Trans. A Math. Phys. Eng. Sci. 370, 3613 (2012)

    ADS  MathSciNet  Google Scholar 

  18. Mohseni, M., Rebentrost, P., Lloyd, S., Aspuru-Guzik, A.: Environment-assisted quantum walks in energy transfer of photosynthetic complexes. J. Chem. Phys. 129, 174106 (2008)

    Article  ADS  Google Scholar 

  19. Caruso, F., et al.: Entanglement and entangling power of the dynamics in light-harvesting complexes. Phys. Rev. A 81, 062346 (2010)

    Article  ADS  Google Scholar 

  20. Engel, G.S., et al.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782 (2007)

    Article  ADS  Google Scholar 

  21. Fröhlich, H., Pelzer, H., Zienau, S.: XX. Properties of slow electrons in polar materials. Lond. Edinb. Dublin Philos. Mag. J. Sci. 41, 221 (1950)

    Article  MATH  Google Scholar 

  22. Holstein, T.: Studies of polaron motion: Part I. The molecular-crystal model. Ann. Phys. 8, 325 (1959)

    Article  ADS  MATH  Google Scholar 

  23. Davydov, A.S.: Solitons in Molecular Systems. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  24. Scott, A.: Davydov’s soliton. Phys. Rep. 217, 1 (1992)

    Article  ADS  MATH  Google Scholar 

  25. Errington, N., Iqbalsyah, T., Doig, A.J.: Structure and stability of the \(\alpha \)-Helix: lessons for design. In: Protein Design: Methods and Applications. Humana Press, Totowa (2006)

  26. Davydov, A.: The theory of contraction of proteins under their excitation. J. Theor. Biol. 38, 559 (1973)

    Article  ADS  Google Scholar 

  27. Davydov, A.: The role of solitons in the energy and electron transfer in one-dimensional molecular systems. Phys. D Nonlinear Phenom. 3, 1 (1981)

    Article  ADS  Google Scholar 

  28. Jonckheere, E., Langbein, F.C., Schirmer, S.G.: Information transfer fidelity in spin networks and ring-based quantum routers. Quantum Inf. Process. 14, 4751 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Franzosi, R., Vaia, R.: Newton’s cradle analogue with Bose-Einstein condensates. J. Phys. B Atomic Mol. Opt. Phys. 47, 095303 (2014)

  30. Jonckheere, E., Schirmer, S.G., Langbein, F.C.: Geometry and curvature of spin networks. In: IEEE International Conference on Control Applications, pp. 786–791 (2011)

  31. Tee, G.J.: Eigenvectors of block circulant and alternating circulant matrices. N. Z. J. Math. 36, 195 (2007)

    MathSciNet  MATH  Google Scholar 

  32. Abderramán Marrero, J., Aiat Hadj, D.: Improving formulas for the eigenvalues of finite block-Toeplitz tridiagonal matrices. Appl. Math. Comput. 382, 125324 (2020)

  33. Nourmandipour, A., Tavassoly, M.K., Mancini, S.: The entangiling power of a “glocal’’ disspative map. Quantum Inf. Comput. 16, 969 (2016)

    MathSciNet  Google Scholar 

  34. Mancini, S., Martins, A.M., Tombesi, P.: Quantum logic with a single trapped electron. Phys. Rev. A 61, 012303 (1999)

    Article  ADS  Google Scholar 

  35. Schlipf, L., et al.: A molecular quantum spin network controlled by a single qubit. Sci. Adv. 3, 1701116 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 964203 (FET-Open LINkS project). RF also acknowledges support from the RESEARCH SUPPORT PLAN 2022—Call for applications for funding allocation to research projects curiosity driven (F CUR)—Project “Entanglement Protection of Qubits’ Dynamics in a Cavity”—EPQDC and the support by the Italian National Group of Mathematical Physics (GNFM-INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Faraji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraji, E., Nourmandipour, A., Mancini, S. et al. Routing a quantum state in a bio-inspired network. Quantum Inf Process 22, 266 (2023). https://doi.org/10.1007/s11128-023-03942-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03942-1

Keywords

Navigation