Skip to main content
Log in

New Z-eigenvalue inclusion theorem of tensors with application to the geometric measure of entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The geometric measure of entanglement plays important role in quantum entanglement of multipartite cases. In this paper, with the eigenvalues of matrices, new Z-eigenvalue inclusion sets are given, some sufficient conditions for the positive definiteness of fourth-order tensors are presented based on the Z-eigenvalue inclusion sets, and then, upper and lower bounds of the geometric measure of entanglement for 4-qubit states are given. In addition, the upper bound of the geometric measure of entanglement is also applied to 4-qubit mixed state case. Finally, numerical experiments are reported to show the efficiency of the proposed new results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Qi, L., Luo Z.Y.: Tensor analysis spectral theory and special tensors. SIAM, USA(2017)

  3. Chang, K.C.: Tan Zhang: on the uniqueness and non-uniqueness of the positive Z-eigenvector for transition probability tensors. J. Math. Anal. Appl. 408(2), 525–540 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Che, M., Cichocki, A., Wei, Y.: Neural networks for computing best rank-one approximations of tensors and its applications. Neurocomputing 267, 114–133 (2017)

    Article  Google Scholar 

  5. Kolda, T.G., Mayo, J.R.: Shifted powermethod for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32, 1095 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, L., Han, L., Zhou, L.: Computing tensor eigenvalues via homotopy methods. SIAM J. Matrix Anal. Appl. 37, 290 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hillar, C.J., Lim, L.-H.: Most tensor problems are NP-hard. J. ACM 60(6), 1–39 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. He, J., Huang, T.: Upper bound for the largest \(Z\)-eigenvalue of positive tensors. Appl. Math. Lett. 38, 110 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, C., Li, Y., Kong, X.: New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl. 21, 39–50 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhao, J.: A new Z-eigenvalue localization set for tensors. J. Inequal. Appl. 85, 2017 (2017)

    MathSciNet  Google Scholar 

  11. Sang, C.: A new brauer-type Z-eigenvalue inclusion set for tensors. Numer. Algorithms 1, 1–14 (2018)

    Google Scholar 

  12. Shimony, A.: Degree of entanglement. Ann. N. Y. Acad. Sci. 755, 675 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  13. Wei, T.C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68, 042307 (2003)

    Article  ADS  Google Scholar 

  14. Wei, T.C., Das, D., Mukhopadyay, S., et al.: Global entanglement and quantum criticality in spin chains. Phys. Rev. A 71, 362 (2005)

    Article  Google Scholar 

  15. Yoshifumi, N., Damian, M., Mio, M.: Thermal robustness of multipartite entanglement of the 1-d spin 1/2 \(xy\) model. Phys. Rev. A 79, 126 (2009)

    Google Scholar 

  16. Hu, S., Qi, L., Zhang, G.: Computing the geometric measure of entanglement of multipartite pure states by means of non-negative tensors. Phys. Rev. A 93, 012304 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. Qi, L., Zhang, G., Ni, G.: How entangled can a multi-party system possibly be? Phys. Lett. A 382, 1465 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Xiong, L., Liu, J., Qin, Q.: The geometric measure of entanglement of multipartite states and the \(Z\)-eigenvalue of tensors. Quantum Inf. Process. 21, 102 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Wang, G., Zhou, G., Caccetta, L.: Z-eigenvalue inclusion theorems for tensors. Discrete Contin. Dyn. Syst. Ser. B 22, 187–198 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Chang, K., Pearson, K., Zhang, T.: Some variational principles for \(Z\)-eigenvalues of nonnegative tensors. Linear Algebra Appl. 438, 4166 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. He, J., Liu, Y., Tian, J., Liu, X.: Upper bounds for signless Laplacian Z-spectral radius of uniform hypergraphs. Front. Math. China 14(1), 17–24 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Guizhou Province Natural Science Foundation in China (Qian Jiao He KY [2020]094, [2022]017), the Science and Technology Foundation of Guizhou Province, China (Qian Ke He Ji Chu ZK[2021]Yi Ban 014), the Key Laboratory of Evolutionary Artificial Intelligence in Guizhou (Qian Jiaoji [2022] No. 059) and the Key Talens Program in digital economy of Guizhou Province.

Author information

Authors and Affiliations

Authors

Contributions

Formal analysis and investigation: Jun He and Qingyu Zeng; Writing - original draft preparation: Jun He; Writing - review and editing: Yanmin Liu and Qingyu Zeng; Funding acquisition: Jun He; Supervision: Yanmin Liu.

Corresponding author

Correspondence to Yanmin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Liu, Y. & Zeng, Q. New Z-eigenvalue inclusion theorem of tensors with application to the geometric measure of entanglement. Quantum Inf Process 22, 134 (2023). https://doi.org/10.1007/s11128-023-03890-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03890-w

Keywords

Mathematics Subject Classification

Navigation