Skip to main content
Log in

Transport properties in directed quantum walks on the line

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We obtained analytical expressions considering a directed continuous-time quantum walk on a directed infinite line using Bessel functions, expanding previous results in the literature, for a general initial condition. We derive the equation for the probability distribution and show how to recover normal and enhanced decay rates for the survival probability by adjusting the phase factor of the direction of the graph. Our result shows that the mean and standard deviation for a specific non-local initial condition do not depend on the direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. https://github.com/JaimePSantos/QWAK.

References

  1. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58(2), 915–928 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process. 1(1/2), 35–43 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 2 (2004)

    Article  Google Scholar 

  4. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 18 (2009)

    Article  MathSciNet  Google Scholar 

  5. Kendon, V.M., Tamon, C.: Perfect state transfer in quantum walks on graphs. J. Comput. Theor. Nanosci. 8(3), 422–433 (2011)

    Article  Google Scholar 

  6. Godsil, C.: When can perfect state transfer occur? Electron. J. Linear Algebra (2012)

  7. Razzoli, L., Paris, M.G.A., Bordone, P.: Transport efficiency of continuous-time quantum walks on graphs. Entropy 23(1), 85 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  8. Lahini, Y., Verbin, M., Huber, S.D., Bromberg, Y., Pugatch, R., Silberberg, Y.: Quantum walk of two interacting bosons. (2011)

  9. Mohar, B.: Hermitian adjacency spectrum and switching equivalence of mixed graphs. Linear Algebra Appl. 489, 324–340 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, K., Mohar, B.: Hermitian adjacency matrix of digraphs and mixed graphs. J. Graph Theory 85(1), 217–248 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Godsil, C., Lato, S.: Perfect state transfer on oriented graphs. Linear Algebra Appl. 604, 278–292 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sett, A., Pan, H., Falloon, P.E., Wang, J.B.: Zero transfer in continuous-time quantum walks. Quantum Inf. Process. 18, 5 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chaves, R., Chagas, B.O., Coutinho, G.: Why and how to add direction to a quantum walk (2022)

  14. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109(5), 1492–1505 (1958)

    Article  ADS  Google Scholar 

  15. Candeloro, A., Razzoli, L., Cavazzoni, S., Bordone, P., Parisl, M.G.A.: Continuous-time quantum walks in the presence of a quadratic perturbation. Phys. Rev. A 102, 4 (2020)

    Article  MathSciNet  Google Scholar 

  16. Delvecchio, M., Groiseau, C., Petiziol, F., Summy, G.S., Wimberger, S.: Quantum search with a continuous-time quantum walk in momentum space. J. Phys. B: Atom. Mol. Opt. Phys. 53(6), 065301 (2020)

    Article  ADS  Google Scholar 

  17. Buarque, A.R.C., Dias, W.S.: Aperiodic space-inhomogeneous quantum walks: localization properties, energy spectra, and enhancement of entanglement. Phys. Rev. E 100, 032106 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  18. Abal, G., Donangelo, R., Romanelli, A., Siri, R.: Effects of non-local initial conditions in the quantum walk on the line. Physica A 371(1), 1–4 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  19. Danacı, B., Yalçınkaya, İ, Çakmak, B., Karpat, G., Kelly, S.P., Subaşı, A.L.: Disorder-free localization in quantum walks. Phys. Rev. A 103, 2 (2021)

    Article  Google Scholar 

  20. Ryan, C.A., Laforest, M., Boileau, J.C., Laflamme, R.: Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor. Phys. Rev. A 72(6), 062317 (2005)

    Article  ADS  Google Scholar 

  21. Jiangfeng, D., Li, H., Xiaodong, X., Shi, M., Jihui, W., Zhou, X., Han, R.: Experimental implementation of the quantum random-walk algorithm. Phys. Rev. A 67(4), 042316 (2003)

    Article  ADS  Google Scholar 

  22. Schmitz, H., Matjeschk, R., Schneider, Ch., Glueckert, J., Enderlein, M., Huber, T., Schaetz, T.: Quantum walk of a trapped ion in phase space. Phys. Rev. Lett. 103(9), 090504 (2009)

    Article  ADS  Google Scholar 

  23. Karski, M., Förster, L., Choi, J.-M., Steffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science 325(5937), 174–177 (2009)

    Article  ADS  Google Scholar 

  24. Manouchehri, K., Wang, J.B.: Quantum walks in an array of quantum dots (2006)

  25. Gräfe, M., Heilmann, R., Lebugle, M., Guzman-Silva, D., Perez-Leija, A., Szameit, A.: Integrated photonic quantum walks. J. Opt. 18(10), 103002 (2016)

    Article  ADS  Google Scholar 

  26. Flamini, F., Spagnolo, N., Sciarrino, F.: Photonic quantum information processing: a review. Rep. Prog. Phys. 82(1), 016001 (2018)

    Article  ADS  Google Scholar 

  27. Neves, L., Puentes, G.: Photonic discrete-time quantum walks and applications. Entropy 20(10), 731 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. Schwartz, T., Bartal, G., Fishman, S., Segev, M.: Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature 446(7131), 52–55 (2007)

    Article  ADS  Google Scholar 

  29. Perets, H.B., Lahini, Y., Pozzi, F., Sorel, M., Morandotti, R., Silberberg, Y.: Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100(17), 170506 (2008)

    Article  ADS  Google Scholar 

  30. Owens, J.O., Broome, M.A., Biggerstaff, D.N., Goggin, M.E., Fedrizzi, A., Linjordet, T., Ams, M., Marshall, G.D., Twamley, J., Withford, M.J., White, A.G.: Two-photon quantum walks in an elliptical direct-write waveguide array. New J. Phys. 13(7), 075003 (2011)

    Article  ADS  Google Scholar 

  31. Peruzzo, A., Lobino, M., Matthews, J.C.F., Matsuda, N., Politi, A., Poulios, K., Zhou, X.-Q., Lahini, Y., Ismail, N., Wörhoff, K., Bromberg, Y., Silberberg, Y., Thompson, M.G., OBrien, J.L.: Quantum walks of correlated photons. Science 329(5998), 1500–1503 (2010)

    Article  ADS  Google Scholar 

  32. Biggerstaff, D.N., Heilmann, R., Zecevik, A.A., Gräfe, M., Broome, M.A., Fedrizzi, A., Nolte, S., Szameit, A., White, A.G., Kassal, I.: Enhancing coherent transport in a photonic network using controllable decoherence. Nat. Commun. 7, 1 (2016)

    Article  Google Scholar 

  33. Caruso, F., Crespi, A., Ciriolo, A.G., Sciarrino, F., Osellame, R.: Fast escape of a quantum walker from an integrated photonic maze. Nat. Commun. 7, 1 (2016)

    Article  Google Scholar 

  34. Wang, K., Shi, Y., Xiao, L., Wang, J., Joglekar, Y.N., Xue, P.: Experimental realization of continuous-time quantum walks on directed graphs and their application in PageRank. Optica 7(11), 1524 (2020)

    Article  ADS  Google Scholar 

  35. Osborne, T.J.: Statics and dynamics of quantum xy and Heisenberg systems on graphs. Phys. Rev. B 74, 094411 (2006)

    Article  ADS  Google Scholar 

  36. Christandl, M., Datta, N., Dorlas, T.C., Ekert, A., Kay, A., Landahl, A.J.: Perfect transfer of arbitrary states in quantum spin networks. Phys. Rev. A 71, 032312 (2005)

    Article  ADS  Google Scholar 

  37. Lebedev, N.N.: Special functions and their applications. Dover Publications, New York (1972)

    MATH  Google Scholar 

  38. Souza, A.M.C., Andrade, R.F.S.: Fast and slow dynamics for classical and quantum walks on mean-field small world networks. Sci. Rep. 9, 19143 (2019)

    Article  ADS  Google Scholar 

  39. Gottlieb, A.D.: Convergence of continuous-time quantum walks on the line. Phys. Rev. E 72, 047102 (2005)

    Article  ADS  Google Scholar 

  40. Wang, Y.: Simulating stochastic diffusions by quantum walks. In: Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 3B: 39th Design Automation Conference:V03BT03A053 (2013)

  41. Bessen, A.J.: Distributions of continuous-time quantum walks. arXiv:quant-ph/0609128 (2006)

  42. Trench, W.F.: On the eigenvalue problem for toeplitz band matrices. Linear Algebra Appl. 64, 199–214 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gönülol, M., Aydıner, E., Shikano, Y., Müstecaplıoglu, Ö.: Survival probability in a one-dimensional quantum walk on a trapped lattice. New J. Phys. 13(3), 033037 (2011)

    Article  ADS  Google Scholar 

  44. Su, Q., Zhang, Y., Yu, L., Zhou, J., Jin, J., Xu, X., Xiong, S., Xu, Q., Sun, Z., Chen, K., Nori, F., Yang, C.: Experimental demonstration of quantum walks with initial superposition states. NPJ Quantum Inf. 5, 40 (2019)

    Article  ADS  Google Scholar 

Download references

Funding

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. This work is financed by National Funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P. (Portuguese Foundation for Science and Technology) within projects UIDB/50014/2020 and IBEX (PTDC/CCI-COM/4280/2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Chaves.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaves, R., Santos, J. & Chagas, B. Transport properties in directed quantum walks on the line. Quantum Inf Process 22, 144 (2023). https://doi.org/10.1007/s11128-023-03874-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03874-w

Keywords

Navigation