Skip to main content
Log in

Coherence as entropy increment for Tsallis and Rényi entropies

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Relative entropy of coherence can be written as an entropy difference of the original state and the incoherent state closest to it when measured by relative entropy. The natural question is, if we generalize this situation to Tsallis or Rényi entropies, would it define good coherence measures? In other words, we define a difference between Tsallis entropies of the original state and the incoherent state closest to it when measured by Tsallis relative entropy. Taking Rényi entropy instead of the Tsallis entropy, leads to the well-known distance-based Rényi coherence, which means this expression defined a good coherence measure. Interestingly, we show that Tsallis entropy does not generate even a genuine coherence monotone, unless it is under a very restrictive class of operations. Additionally, we provide continuity estimate for Rényi coherence. Furthermore, we present two coherence measures based on the closest incoherent state when measures by Tsallis or Rényi relative entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Aberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  ADS  Google Scholar 

  2. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)

    Article  ADS  Google Scholar 

  3. Chitambar, E., Gour, G.: Critical examination of incoherent operations and a physically consistent resource theory of quantum coherence. Phys. Rev. Lett. 117(3), 030401 (2016)

    Article  ADS  Google Scholar 

  4. Chitambar, E., Gour, G.: Comparison of incoherent operations and measures of coherence. Phys. Rev. A 94(5), 052336 (2016)

    Article  ADS  Google Scholar 

  5. Chitambar, E., Hsieh, M.H.: Relating the resource theories of entanglement and quantum coherence. Phys. Rev. Lett. 117(2), 020402 (2016)

    Article  ADS  Google Scholar 

  6. Cwikliski, P., Studziski, M., Horodecki, M., Oppenheim, J.: Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics. Phys. Rev. Lett. 115(21), 210403 (2015)

    Article  ADS  Google Scholar 

  7. Dai, Y., Hu, J., Zhang, Z., Zhang, C., Dong, Y., Wang, X.: Measurement-induced entropy increment for quantifying genuine coherence. Quantum Inf. Process. 20(8), 1–12 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. De Vicente, J.I., Streltsov, A.: Genuine quantum coherence. J. Phys. A Math. Theor. 50(4), 045301 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Du, S., Bai, Z., Guo, Y.: Conditions for coherence transformations under incoherent operations. Phys. Rev. A 91(5), 052120 (2015)

    Article  ADS  Google Scholar 

  10. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131(6), 2766 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Hardy, G.H., Littlewood, J.E., Pólya, G.: Some simple inequalities satisfied by convex function. Messenger Math. 58, 145–152 (1929)

    MATH  Google Scholar 

  12. Hiai, F., Mosonyi, M.: Different quantum \(f\)-divergences and the reversibility of quantum operations. Rev. Math. Phys. 29(07), 1750023 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, M.L., Hu, X., Wang, J., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762, 1–100 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Kammerlander, P., Anders, J.: Coherence and measurement in quantum thermodynamics. Sci. Rep. 6(1), 1–7 (2016)

    Article  Google Scholar 

  15. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  16. Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116(16), 160407 (2016)

    Article  ADS  Google Scholar 

  17. Marshall, A. W., Olkin, I., Arnold, B.C.: Doubly Stochastic Matrices. In Inequalities: Theory of Majorization and Its Applications, pp. 29–77. Springer, New York (2010)

  18. Piani, M., Cianciaruso, M., Bromley, T.R., Napoli, C., Johnston, N., Adesso, G.: Robustness of asymmetry and coherence of quantum states. Phys. Rev. A 93(4), 042107 (2016)

    Article  ADS  Google Scholar 

  19. Pinelis, I.: Modulus of continuity of the quantum f-entropy with respect to the trace distance. arXiv preprint arXiv:2107.10112 (2021)

  20. Radhakrishnan, C., Parthasarathy, M., Jambulingam, S., Byrnes, T.: Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 116(15), 150504 (2016)

    Article  ADS  Google Scholar 

  21. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93(1), 012110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. Rastegin, A.E.: Quantum-coherence quantifiers based on the Tsallis relative \(\alpha \) entropies. Phys. Rev. A 93(3), 032136 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  23. Rebentrost, P., Mohseni, M., Aspuru-Guzik, A.: Role of quantum coherence and environmental fluctuations in chromophoric energy transport. J. Phys. Chem. B 113, 9942 (2009)

    Article  Google Scholar 

  24. Schur, I.: Uber eine Klasse von Mittelbildungen mit Anwendungen auf die Determinantentheorie. Sitzungsberichte der Berliner Mathematischen Gesellschaft 22(9–20), 51 (1923)

    MATH  Google Scholar 

  25. Scully, M.O., Zubairy, M.S.: Quantum Optics, Cambridge. Ch, 4, 17 (1997)

  26. Shao, L.H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A 91(4), 042120 (2015)

    Article  ADS  Google Scholar 

  27. Shao, L.H., Li, Y.M., Luo, Y., Xi, Z.J.: Quantum Coherence quantifiers based on Rényi \(\alpha \)-relative entropy. Commun. Theor. Phys. 67(6), 631 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89(4), 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  29. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115(2), 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. Tan, K.C., Kwon, H., Park, C.Y., Jeong, H.: Unified view of quantum correlations and quantum coherence. Phys. Rev. A 94(2), 022329 (2016)

    Article  ADS  Google Scholar 

  31. Vershynina, A.: Measure of genuine coherence based of quasi-relative entropy. Quantum Inf. Process. 21(5), 1–22 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  32. Virosztek, D.: Quantum entropies, relative entropies, and related preserver problems (2016)

  33. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116(12), 120404 (2016)

    Article  ADS  Google Scholar 

  34. Witt, B., Mintert, F.: Stationary quantum coherence and transport in disordered networks. New J. Phys. 15, 093020 (2013)

    Article  ADS  MATH  Google Scholar 

  35. Yadin, B., Ma, J., Girolami, D., Gu, M., Vedral, V.: Quantum processes which do not use coherence. Phys. Rev. X 6(4), 041028 (2016)

    Google Scholar 

  36. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92(2), 022112 (2015)

    Article  ADS  Google Scholar 

  37. Yu, X.D., Zhang, D.J., Xu, G.F., Tong, D.M.: Alternative framework for quantifying coherence. Phys. Rev. A 94(6), 060302 (2016)

    Article  ADS  Google Scholar 

  38. Zhao, H., Yu, C.S.: Coherence measure in terms of the Tsallis relative \(\alpha \) entropy. Sci. Rep. 8(1), 299 (2018)

    Article  ADS  Google Scholar 

  39. Zhu, H., Ma, Z., Cao, Z., Fei, S.M., Vedral, V.: Operational one-to-one mapping between coherence and entanglement measures. Phys. Rev. A 96(3), 032316 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A. V. was supported by NSF grant DMS-2105583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Vershynina.

Ethics declarations

Conflict of interest

The author has no competing interests or conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vershynina, A. Coherence as entropy increment for Tsallis and Rényi entropies. Quantum Inf Process 22, 127 (2023). https://doi.org/10.1007/s11128-023-03872-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03872-y

Keywords

Navigation