Skip to main content
Log in

Quantum classifiers for domain adaptation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Transfer learning (TL), a crucial subfield of machine learning, aims to accomplish a task in the target domain with the acquired knowledge of the source domain. Specifically, effective domain adaptation (DA) facilitates the delivery of the TL task where all the data samples of the two domains are distributed in the same feature space. In this paper, two quantum implementations of the DA classifier are presented with quantum speedup compared with the classical DA classifier. One implementation, the quantum basic linear algebra subroutines-based classifier, can predict the labels of the target domain data with logarithmic resources in the number and dimension of the given data. The other implementation efficiently accomplishes the DA task through a variational hybrid quantum-classical procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  2. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105 . PMLR (2015)

  3. Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A., Van Der Maaten, L.: Exploring the limits of weakly supervised pretraining. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 181–196 (2018)

  4. Xie, M., Jean, N., Burke, M., Lobell, D., Ermon, S.: Transfer learning from deep features for remote sensing and poverty mapping. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

  5. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  6. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: A survey. Journal of Machine Learning Research 10(7) (2009)

  7. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

  8. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)

  9. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. Aaronson, S., Arkhipov, A.: The computational complexity of linear optics. In: Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing, pp. 333–342 (2011)

  11. Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018)

  12. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv:1307.0411 (2013)

  13. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631–633 (2014)

    Article  Google Scholar 

  14. Rebentrost, P., Steffens, A., Marvian, I., Lloyd, S.: Quantum singular-value decomposition of nonsparse low-rank matrices. Phys. Rev. A 97(1), 012327 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014)

    Article  ADS  Google Scholar 

  16. Wiebe, N., Kapoor, A., Svore, K.M.: Quantum nearest-neighbor algorithms for machine learning. Quantum Inf. Comput. 15(3–4), 318–358 (2015)

    Google Scholar 

  17. Dang, Y., Jiang, N., Hu, H., Ji, Z., Zhang, W.: Image classification based on quantum k-nearest-neighbor algorithm. Quantum Inf. Process. 17(9), 1–18 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wiebe, N., Braun, D., Lloyd, S.: Quantum algorithm for data fitting. Phys. Rev. Lett. 109(5), 050505 (2012)

    Article  ADS  Google Scholar 

  19. Schuld, M., Sinayskiy, I., Petruccione, F.: Prediction by linear regression on a quantum computer. Phys. Rev. A 94(2), 022342 (2016)

    Article  ADS  Google Scholar 

  20. Aïmeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cong, I., Duan, L.: Quantum discriminant analysis for dimensionality reduction and classification. New J. Phys. 18(7), 073011 (2016)

    Article  ADS  MATH  Google Scholar 

  22. He, X., Sun, L., Lyu, C., Wang, X.: Quantum locally linear embedding for nonlinear dimensionality reduction. Quantum Inf. Process. 19(9), 1–21 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wiebe, N., Kapoor, A., Svore, K.M.: Quantum deep learning. Quant. Inf. Comput. 16(7–8), 541–587 (2016)

    MathSciNet  Google Scholar 

  24. Amin, M.H., Andriyash, E., Rolfe, J., Kulchytskyy, B., Melko, R.: Quantum Boltzmann machine. Phys. Rev. X 8(2), 021050 (2018)

    Google Scholar 

  25. Lloyd, S., Weedbrook, C.: Quantum generative adversarial learning. Phys. Rev. Lett. 121(4), 040502 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. Dallaire-Demers, P.-L., Killoran, N.: Quantum generative adversarial networks. Phys. Rev. A 98(1), 012324 (2018)

    Article  ADS  Google Scholar 

  27. Hu, L., Wu, S.-H., Cai, W., Ma, Y., Mu, X., Xu, Y., Wang, H., Song, Y., Deng, D.-L., Zou, C.-L.: Quantum generative adversarial learning in a superconducting quantum circuit. Sci. Adv. 5(1), 2761 (2019)

    Article  ADS  Google Scholar 

  28. Benedetti, M., Grant, E., Wossnig, L., Severini, S.: Adversarial quantum circuit learning for pure state approximation. New J. Phys. 21(4), 043023 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  29. Situ, H., He, Z., Wang, Y., Li, L., Zheng, S.: Quantum generative adversarial network for generating discrete distribution. Inf. Sci. 538, 193–208 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zeng, J., Wu, Y., Liu, J.-G., Wang, L., Hu, J.: Learning and inference on generative adversarial quantum circuits. Phys. Rev. A 99(5), 052306 (2019)

    Article  ADS  Google Scholar 

  31. Romero, J., Olson, J.P., Aspuru-Guzik, A.: Quantum autoencoders for efficient compression of quantum data. Quant. Sci. Technol. 2(4), 045001 (2017)

    Article  ADS  Google Scholar 

  32. Lamata, L., Alvarez-Rodriguez, U., Martin-Guerrero, J.D., Sanz, M., Solano, E.: Quantum autoencoders via quantum adders with genetic algorithms. Quant. Sci. Technol. 4(1), 014007 (2018)

    Article  ADS  Google Scholar 

  33. Khoshaman, A., Vinci, W., Denis, B., Andriyash, E., Sadeghi, H., Amin, M.H.: Quantum variational autoencoder. Quant. Sci. Technol. 4(1), 014001 (2018)

    Article  ADS  Google Scholar 

  34. Wan, K.H., Dahlsten, O., Kristjánsson, H., Gardner, R., Kim, M.: Quantum generalisation of feedforward neural networks. npj Quant. Inf. 3(1), 1–8 (2017)

    Google Scholar 

  35. Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Salzmann, R., Scheiermann, D., Wolf, R.: Training deep quantum neural networks. Nat. Commun. 11(1), 1–6 (2020)

    Article  Google Scholar 

  36. Mari, A., Bromley, T.R., Izaac, J., Schuld, M., Killoran, N.: Transfer learning in hybrid classical-quantum neural networks. Quantum 4, 340 (2020)

    Article  Google Scholar 

  37. He, X.: Quantum correlation alignment for unsupervised domain adaptation. Phys. Rev. A 102(3), 032410 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  38. He, X.: Quantum subspace alignment for domain adaptation. Phys. Rev. A 102(6), 062403 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  39. Sun, B., Saenko, K.: From virtual to reality: fast adaptation of virtual object detectors to real domains. BMVC 1, 3 (2014)

    Google Scholar 

  40. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)

    Article  Google Scholar 

  41. Schuld, M., Petruccione, F.: Supervised Learning with Quantum Computers. Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  42. Barenco, A., Ekert, A., Suominen, K.-A., Törmä, P.: Approximate quantum Fourier transform and decoherence. Phys. Rev. A 54(1), 139 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  43. Zalka, C.: Fast versions of Shor’s quantum factoring algorithm. arXiv preprint arXiv:quant-ph/9806084 (1998)

  44. Draper, T.G.: Addition on a quantum computer. arXiv preprint arXiv:quant-ph/0008033 (2000)

  45. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100(16), 160501 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  47. Duan, B., Yuan, J., Liu, Y., Li, D.: Quantum algorithm for support matrix machines. Phys. Rev. A 96(3), 032301 (2017)

    Article  ADS  Google Scholar 

  48. Coppersmith, D.: An approximate Fourier transform useful in quantum factoring. IBM Research Report, 19642 (1994)

  49. Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)

    Article  ADS  Google Scholar 

  50. Sun, X., Tian, G., Yang, S., Yuan, P., Zhang, S.: Asymptotically optimal circuit depth for quantum state preparation and general unitary synthesis. arXiv preprint arXiv:2108.06150 (2021)

  51. Cerezo, M., Sharma, K., Arrasmith, A., Coles, P.J.: Variational quantum state eigensolver. arXiv preprint arXiv:2004.01372 (2020)

  52. Bravo-Prieto, C., LaRose, R., Cerezo, M., Subasi, Y., Cincio, L., Coles, P.J.: Variational quantum linear solver. arXiv preprint arXiv:1909.05820 (2019)

  53. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  54. Paddle Quantum . https://github.com/PaddlePaddle/Quantum (2020)

  55. Fix, E., Hodges, J.L.: Discriminatory analysis. Nonparametric discrimination: consistency properties. Int. Stat. Review/Revue Internationale de Statistique 57(3), 238–247 (1989)

    MATH  Google Scholar 

  56. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (Poster). arXiv:1412.6980 (2015)

  57. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  58. LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.E., Jackel, L.D.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems, pp. 396–404 (1990)

Download references

Acknowledgements

The author would like to thank Xiaoting Wang for constructive discussions. The author also would like to thank the referees for helpful comments on this paper. This work is supported by National Key Research and Development Program of China Grant No. 2018YFA0306703, in part by the National Natural Science Foundation of China under Grant 62271296, in part by Natural Science Basic Research Program of Shaanxi (No. 2021JC-47), in part by Key Research and Development Program of Shaanxi (Program No. 2022GY-436, NO. 2021ZDLGY08-07), in part by Natural Science Basic Research Program of Shaanxi (Program No. 2022JQ-018), and in part by Shaanxi Joint Laboratory of Artificial Intelligence (No. 2020SS-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Lei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Du, F., Xue, M. et al. Quantum classifiers for domain adaptation. Quantum Inf Process 22, 105 (2023). https://doi.org/10.1007/s11128-023-03846-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03846-0

Keywords

Navigation