Skip to main content
Log in

Quantum multi-programming for Grover’s search

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum multi-programming is a method utilizing contemporary noisy intermediate-scale quantum computers by executing multiple quantum circuits concurrently. Despite early research on it, the research remains on quantum gates or small-size quantum algorithms without correlation. In this paper, we propose a quantum multi-programming (QMP) algorithm for Grover’s search. Our algorithm decomposes Grover’s algorithm by the partial diffusion operator and executes the decomposed circuits in parallel by QMP. We proved that this new algorithm increases the rotation angle of the Grover operator which, as a result, increases the success probability. The new algorithm is implemented on IBM quantum computers and compared with the canonical Grover’s algorithm and other variations of Grover’s algorithms. The empirical tests validate that our new algorithm outperforms other variations of Grover’s algorithms as well as the canonical Grover’s algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All code and data generated or analyzed during this study are available at the GitHub repository, https://github.com/yukwangmin/QMP_GS.

References

  1. Yirka, B.: IBM announces development of 127-qubit quantum processor (2021). https://phys.org/news/2021-11-ibm-qubit-quantum-processor.html

  2. Preskill, J.: Quantum Computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

    Article  Google Scholar 

  3. Moll, N., Barkoutsos, P., Bishop, L.S., Chow, J.M., Cross, A., Egger, D.J., Filipp, S., Fuhrer, A., Gambetta, J.M., Ganzhorn, M., et al.: Quantum optimization using variational algorithms on near-term quantum devices. Quantum Sci. Technol. 3(3), 030503 (2018)

    Article  ADS  Google Scholar 

  4. Cross, A.W., Bishop, L.S., Sheldon, S., Nation, P.D., Gambetta, J.M.: Validating quantum computers using randomized model circuits. Phys. Rev. A 100(3), 032328 (2019)

    Article  ADS  Google Scholar 

  5. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th annual symposium on foundations of computer science, pp. 124–134 (1994). IEEE

  6. Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Grover, L.K.: Quantum Mechanics Helps in Searching for a Needle in a Haystack. Phys. Rev. Lett. 79(2), 325–328 (1997). https://doi.org/10.1103/PhysRevLett.79.325

    Article  ADS  Google Scholar 

  8. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. Farhi, E., Goldstone, J., Gutmann, S.: A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014)

  10. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., O’brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 1–7 (2014)

    Article  Google Scholar 

  11. Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018)

  12. Altaisky, M.: Quantum neural network. arXiv preprint quant-ph/0107012 (2001)

  13. Beer, K., Bondarenko, D., Farrelly, T., Osborne, T.J., Salzmann, R., Scheiermann, D., Wolf, R.: Training deep quantum neural networks. Nat. Commun. 11(1), 1–6 (2020)

    Article  Google Scholar 

  14. Cong, I., Choi, S., Lukin, M.D.: Quantum convolutional neural networks. Nat. Phys. 15(12), 1273–1278 (2019)

    Article  Google Scholar 

  15. Aaronson, S., Rall, P.: Quantum approximate counting, simplified. In: Symposium on simplicity in algorithms, 24–32 (2020). https://doi.org/10.1137/1.9781611976014.5. SIAM

  16. Suzuki, Y., Uno, S., Raymond, R., Tanaka, T., Onodera, T., Yamamoto, N.: Amplitude estimation without phase estimation. Quantum Inf. Process. 19(2), 75 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Yu, K., Lim, H., Rao, P.: Practical numerical integration on NISQ devices. In: Quantum Information Science, Sensing, and Computation XII, vol. 11391, p. 1139106 (2020). SPIE

  18. Grinko, D., Gacon, J., Zoufal, C., Woerner, S.: Iterative quantum amplitude estimation. Quantum Inf. 7(1), 1–6 (2021)

    Google Scholar 

  19. Rao, P., Yu, K., Lim, H., Jin, D., Choi, D.: Quantum amplitude estimation algorithms on IBM quantum devices. Quantum Commun. Quantum Imaging 11507, 49–60 (2020)

    Google Scholar 

  20. Zhang, K., Korepin, V.E.: Depth optimization of quantum search algorithms beyond Grover’s algorithm. Phys. Rev. A 101(3), 032346 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. Zhang, K., Rao, P., Yu, K., Lim, H., Korepin, V.: Implementation of efficient quantum search algorithms on NISQ computers. Quantum Inf. Process. 20(7), 1–27 (2021)

    Article  MathSciNet  Google Scholar 

  22. Zhang, K., Yu, K., Korepin, V.: Quantum search on noisy intermediate-scale quantum devices. Europhys. Lett. 140(1), 18002 (2022). https://doi.org/10.1209/0295-5075/ac90e6

    Article  ADS  Google Scholar 

  23. Das, P., Tannu, S.S., Nair, P.J., Qureshi, M.: A case for multi-programming quantum computers. In: Proceedings of the 52nd annual IEEE/ACM international symposium on microarchitecture, pp. 291–303 (2019)

  24. Ohkura, Y., Satoh, T., Van Meter, R.: Simultaneous execution of quantum circuits on current and near-future NISQ systems. IEEE Trans. Quantum Eng. (2022). https://doi.org/10.1109/TQE.2022.3164716

    Article  Google Scholar 

  25. Liu, L., Dou, X.: QuCloud: A new qubit mapping mechanism for multi-programming quantum computing in cloud environment. In: 2021 IEEE International symposium on high-performance computer architecture (HPCA), pp. 167–178 (2021). IEEE

  26. Niu, S., Todri-Sanial, A.: Enabling multi-programming mechanism for quantum computing in the NISQ era. arXiv preprint arXiv:2102.05321 (2021)

  27. Niu, S., Todri-Sanial, A.: How parallel circuit execution can be useful for NISQ computing? In: 2022 Design, automation & test in Europe conference & exhibition (DATE), pp. 1065–1070 (2022). IEEE

  28. Niu, S., Todri-Sanial, A.: Multi-programming cross platform benchmarking for quantum computing hardware. arXiv preprint arXiv:2206.03144 (2022)

  29. Resch, S., Gutierrez, A., Huh, J.S., Bharadwaj, S., Eckert, Y., Loh, G., Oskin, M., Tannu, S.: Accelerating variational quantum algorithms using circuit concurrency. arXiv preprint arXiv:2109.01714 (2021)

  30. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  31. Grover, L.K.: Trade-offs in the quantum search algorithm. Phys. Rev. A 66(5), 052314 (2002)

    Article  ADS  Google Scholar 

  32. Grover, L.K., Radhakrishnan, J.: Is partial quantum search of a database any easier? In: Proceedings of the seventeenth annual ACM symposium on parallelism in algorithms and architectures, pp. 186–194 (2005). ACM

  33. Korepin, V.E., Grover, L.K.: Simple algorithm for partial quantum search. Quantum Inf. Process. 5(1), 5–10 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Korepin, V.E.: Optimization of partial search. J. Phys. A Math. Gen. 38(44), 731 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Choi, B.-S., Korepin, V.E.: Quantum partial search of a database with several target items. Quantum Inf. Process. 6(4), 243–254 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Zhang, K., Korepin, V.: Quantum partial search for uneven distribution of multiple target items. Quantum Inf. Process. 17(6), 1–20 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Murali, P., McKay, D.C., Martonosi, M., Javadi-Abhari, A.: Software mitigation of crosstalk on noisy intermediate-scale quantum computers. In: Proceedings of the twenty-fifth international conference on architectural support for programming languages and operating systems, pp. 1001–1016 (2020)

  38. Tannu, S.S., Qureshi, M.K.: Not all qubits are created equal: A case for variability-aware policies for nisq-era quantum computers. In: Proceedings of the twenty-fourth international conference on architectural support for programming languages and operating systems, pp. 987–999 (2019)

  39. Ohkura, Y.: Crosstalk-aware NISQ Multi-programming. Faculty Policy Manage., Keio Univ., Tokyo, Japan (2021)

Download references

Acknowledgements

We would like to thank the Brookhaven National Laboratory operated IBM-Q Hub. This research used quantum computing resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 using NERSC award DDR-ERCAP0022229. We acknowledge the access to IonQ and Honeywell Quantum Solution through the Microsoft Azure Quantum grant No. 35984. Microsoft Azure Quantum funded access to quantum computers and simulators from IonQ through the Azure Quantum Credits program. The work of Vladimir Korepin was supported by the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Co-design Center for Quantum Advantage (C2QA) under Contract No. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwangmin Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Partial measurement

figure e

Appendix B Qubit mapping layout and circuit depth

In this section, the layout of IBM quantum computers and qubit mappings is visualized. Each sub-figure is results of qiskit.visualization.plot_circuit_layout() function calls in Qiskit, and the numbers in the black circles represent the logical qubits of the QMP circuit before the transpiling.

See Figs. 8, 9, 10.

Fig. 8
figure 8

Circuit mapping layouts for G2D3M3 on IBMQ_Brooklyn

Fig. 9
figure 9

Circuit mapping layouts for G2D3M3 on IBM_Washington

Fig. 10
figure 10

Circuit mapping layouts for G3D2M2 on IBM_Washington

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, G., Zhang, K., Yu, K. et al. Quantum multi-programming for Grover’s search. Quantum Inf Process 22, 54 (2023). https://doi.org/10.1007/s11128-022-03793-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03793-2

Keywords

Navigation