Skip to main content
Log in

Quantum relaxed row and column iteration methods based on block-encoding

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Iteration method is commonly used in solving linear systems of equations. We present quantum algorithms for the relaxed row and column iteration methods by constructing unitary matrices in the iterative processes, which generalize row and column iteration methods to solve linear systems on a quantum computer. Comparing with the conventional row and column iteration methods, the convergence accelerates when appropriate parameters are chosen. Once the quantum states are efficiently prepared, the complexity of our relaxed row and column methods is improved exponentially and is linear with the number of the iteration steps. In addition, phase estimations and Hamiltonian simulations are not required in these algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring, In: Proc. of the 35th FOCS. IEEE, New York, pp. 124-134 (1994)

  2. Grover, K.: Quantum mechanics helps in searching for a needle in a Haystack. Phys. Rev. Lett. 79(2), 325 (1997). arXiv:9706033 [quant-ph]

    Article  ADS  Google Scholar 

  3. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Biamonte, J., Wittek, P., Pancotti, N., Rebentros, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195C202 (2017)

    Article  Google Scholar 

  5. Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)

    Article  ADS  Google Scholar 

  6. Wan, K.H., Dahlsten, O., Kristjnsson, H., Gardner, R., Kim, M.S.: Quantum generalisation of feedforward neural networks (2016). arXiv:1612.01045

  7. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). arXiv:1801.00862

    Article  Google Scholar 

  8. Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., O’Brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014)

    Article  ADS  Google Scholar 

  9. Kaczmarz, S.: Classe des Sciences Mathématiques et Naturelles. Série A, Sciences Mathématiques 35, 355 (1937)

    Google Scholar 

  10. Gordon, R., Bender, R., Herman, G.: Algebraic reconstruction techniques (ART) for the three-dimensional electron miscroscopy and X-ray photography. J. Theor. Biol. 29, 471–481 (1970)

    Article  ADS  Google Scholar 

  11. Leventhal, D., Lewis, A.S.: Randomized methods for linear constraints: convergence rates and conditioning. Math. Oper. Res. 35, 641 (2010)

    Article  MathSciNet  Google Scholar 

  12. Rebentrost, P., Schuld, M., Wossnig, L., Petruccione, F., Lloyd, S.: Quantum gradient descent and Newton’s method for constrained polynomial optimization. New J. Phys. 21, 073023 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  13. Kerenidis, I., Prakash, A.: A Quantum Interior Point Method for LPs and SDPs (2018). arXiv:1808.09266v1

  14. Childs, A.M., Kothari, R., Somma, R.D.: Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 46, 1920 (2017)

    Article  MathSciNet  Google Scholar 

  15. Wossnig, L., Zhao, Z., Prakash, A.: Quantum linear system algorithm for dense matrices. Phys. Rev. Lett. 120, 050502 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. Chakraborty, S., Gilyén, A., Jeffery, S.: 46th Interna tional Colloquium on Automata, Languages, and Program ming (ICALP 2019), Leibniz International Proceedings in In formatics (LIPIcs). In: Baier, C., Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) Schloss Dagstuhl-Leibniz Zentrum fuer Informatik, vol. 132, p. 33:1-33:14. Dagstuhl, Germany (2019)

    Google Scholar 

  17. Shao, C.P., Xiang, H.: Row and column iteration methods to solve linear systems on a quantum computer. Phys. Rev. A 101, 022322 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  18. Zuo, Q., Shao, C.P., Wu, N.C., Xiang, H.: An extended row and column method for solving linear systems on a quantum computer. Int. J. Theor. Phys. 60(7), 2592 (2021)

    Article  MathSciNet  Google Scholar 

  19. Eggermont, P.P.B., Herman, G.T., Lent, A.: Iterative algorithms for large partitioned linear systems, with applications to image reconstruction. Linear Algebra Appl. 40, 37–67 (1981)

    Article  MathSciNet  Google Scholar 

  20. Elfving, T., Hansen, P.C., Nikazad, T.: Convergence analysis for column-action methods in image reconstruction. Numer. Algor. 74, 905 (2017)

    Article  MathSciNet  Google Scholar 

  21. Du, Kui, Sun, Xiaohui: A doubly stochastic block Gauss-Seidel algorithm for solving linear equations (2020). arXiv:1912.13291

  22. Whitney, T.M., Meany, R.K.: Two algorithms related to the method of steepest descent. SIAM J. Numer. Anal. 4, 109–118 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  23. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum random access memory. Phys. Rev. Lett. 100, 160501 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  24. Grover, L., Rudolph, T.: Creating superpositions that correspond to efficiently integrable probability distributions (2002). arXiv:0208112 [quant-ph]

Download references

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities 22CX03005A, the Shandong Provincial Natural Science Foundation for Quantum Science No. ZR2020LLZ003, ZR2021LLZ002, Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology (Grant No. SIQSE202001), Beijing Natural Science Foundation (Z190005), the Academician Innovation Platform of Hainan Province, Academy for Multidisciplinary Studies, Capital Normal University, and NSFC No. 12075159, 12171044.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XQ., Wang, J., Li, M. et al. Quantum relaxed row and column iteration methods based on block-encoding. Quantum Inf Process 21, 230 (2022). https://doi.org/10.1007/s11128-022-03569-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03569-8

Keywords

Navigation