Skip to main content
Log in

Generation of enhanced entanglement of directly and indirectly coupled modes in a two-cavity magnomechanical system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We analytically investigate a theoretical scheme to enhance the bi-partite entanglement of directly and indirectly coupled modes in a magnomechanical system which is composed of two microwaves (MW) cavity mode photons, magnons and phonons. The magnon mode not only simultaneously couples with two MV cavity modes, via the magnetic dipole interaction, but also with mechanical mode via magnetostrictive interaction. The two MW fields can be entangled if they are, respectively, resonant with two sidebands of the mechanical mode. Interestingly, the numerical simulation results show that the magnon interaction with two MV cavity modes leads to an enhanced entanglement spectrum of directly (magnon–phonon) and indirectly (cavity–phonon) coupled modes. We also show that the entanglement of directly and indirectly coupled modes persists for temperature up to 250 mK which is higher than the previously observed value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data used during this study are available within the article.

References

  1. Su, Y.C., Wu, S.T.: Entanglement enhancement through multirail noise reduction for continuous-variable measurement-based. Phys. Rev. A 96(3), 032327 (2017)

    Article  ADS  Google Scholar 

  2. Ahmed, R., Qamar, S.: Optomechanical entanglement via non-degenerate parametric interactions. Phys. Scr. 92, 105101 (2017)

    Article  ADS  Google Scholar 

  3. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  4. Sohail, A., Ahmed, R., Yu, C.S., Munir, T.: Enhanced entanglement induced by Coulomb interaction in coupled optomechanical systems. Phys. Scr. 95(3), 035108 (2020)

    Article  ADS  Google Scholar 

  5. Lo, H.K., Ma, X.F., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

    Article  ADS  Google Scholar 

  6. Pivoluska, M., Huber, M., Malik, M.: Layered quantum key distribution. Phys. Rev. A 97(3), 032312 (2018)

    Article  ADS  Google Scholar 

  7. Schaetz, T., et al.: Quantum dense coding with atomic qubits. Phys. Rev. Lett. 93(4), 040505 (2004)

    Article  ADS  Google Scholar 

  8. Bruß, D., et al.: Distributed quantum dense coding. Phys. Rev. Lett. 93(21), 210501 (2004)

    Article  ADS  Google Scholar 

  9. Luo, Y.H., et al.: Quantum teleportation in high dimension. Phys. Rev. Lett. 123(7), 070505 (2019)

    Article  ADS  Google Scholar 

  10. Ul-Islam, R., Ikram, M., Ahmed, R., Khosa, A.H., Saif, F.: Atomic state teleportation: from internal to external degrees of freedom. J. Mod. Opt. 56(7), 875–880 (2009)

    Article  ADS  MATH  Google Scholar 

  11. Lynden, K., et al.: Strong loophole-free test of local realism. Phys. Rev. Lett. 115, 250402 (2015)

    Article  Google Scholar 

  12. Hensen, B., et al.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015)

    Article  ADS  Google Scholar 

  13. Arkhipov, I.I., Perina, J., Jr., Haderka, O., Allevi, A., Bondani, M.: Entanglement and nonclassicality in four-mode Gaussian states generated via parametric down-conversion and frequency up-conversion. Sci. Rep. 6, 33802 (2016)

    Article  ADS  Google Scholar 

  14. Li, X., Voss, P.. L., Sharping, J.. E., Kumar, P.: Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. Phys. Rev. Lett. 94, 053601 (2005)

    Article  ADS  Google Scholar 

  15. Benson, O., Santori, C., Pelton, M., Yamamoto, Y.: Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513 (2000)

    Article  ADS  Google Scholar 

  16. Marino, A.M., Pooser, R.C., Boyer, V., Lett, P.D.: Tunable delay of Einstein–Podolsky–Rosen enatnglement. Nature (London) 457, 859 (2009)

    Article  ADS  Google Scholar 

  17. Bergeal, N., Schackert, F., Frunzio, L., Devoret, M.H.: Two-mode correlation of microwave quantum noise generated by parametric down-conversion. Phys. Rev. Lett. 108, 123902 (2012)

    Article  ADS  Google Scholar 

  18. Yang, Zhi-Bo., et al.: Entanglement enhanced by Kerr nonlinearity in a cavity-optomagnonics system. Opt. Express 28, 31862 (2020)

    Article  ADS  Google Scholar 

  19. Kittel, C.: On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155 (1948)

    Article  ADS  Google Scholar 

  20. Huebl, H., et al.: High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett. 111, 127003 (2013)

    Article  ADS  Google Scholar 

  21. Bai, L., Harder, M., Chen, Y.P., Fan, X., Xiao, J.Q., Hu, C.M.: Spin pumping in electrodynamically coupled magnon–photon systems. Phys. Rev. Lett. 114, 227201 (2015)

    Article  ADS  Google Scholar 

  22. Castro, C., Araújo, M.R., Cruz, C.: Entanglement dynamics of a dc SQUID interacting with a single mode radiation field. Phys. Scr. 96, 105101 (2021)

    Article  ADS  Google Scholar 

  23. Li, J., Zhu, S.Y., Agarwal, G.S.: Magnon–photon–phonon entanglement in cavity magnomechanics. Phys. Rev. Lett. 121, 203601 (2018)

    Article  ADS  Google Scholar 

  24. Yu, M., Shen, H., Li, J.: Magnetostrictively induced stationary entanglement between two microwave fields. Phys. Rev. Lett. 124, 213604 (2020)

    Article  ADS  Google Scholar 

  25. Li, J., Zhu, S.Y., Agarwal, G.S.: Squeezed states of magnons and phonons in cavity magnomechanics. Phys. Rev. A 99, 021801(R) (2019)

    Article  ADS  Google Scholar 

  26. Li, J., Gröblacher, S.: Entangling the vibrational modes of two massive ferromagnetic spheres using cavity magnomechanics. Quantum Sci. Technol. 6, 024005 (2021)

    Article  ADS  Google Scholar 

  27. Yang, Z.B., et al.: Entanglement enhanced by Kerr nonlinearity in a cavity-optomagnonics system. Opt. Exp. 28, 31862 (2020)

    Article  Google Scholar 

  28. Zhang, X., Zou, C.L., Jiang, L., Tang, H.X.: Cavity magnomechanics. Sci. Adv. 2, e1501286 (2016)

    Article  ADS  Google Scholar 

  29. Kittel, C.: Interaction of spin waves and ultrasonic waves in ferromagnetic crystals. Phys. Rev. 110, 836 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Gonzalez-Ballestero, C., Hümmer, D., Gieseler, J., Romero-Isart, O.: Theory of quantum acoustomagnonics and acoustomechanics with a micromagnet. Phys. Rev. B 101, 125404 (2020)

    Article  ADS  Google Scholar 

  31. Tabuchi, Y., Ishino, S., Ishikawa, T., Yamazaki, R., Usami, K., Nakamura, Y.: Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014)

    Article  ADS  Google Scholar 

  32. Goryachev, M., Farr, W.G., Creedon, D.L., Fan, Y., Kostylev, M., Tobar, M.E.: High-cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. Appl. 2, 054002 (2014)

    Article  ADS  Google Scholar 

  33. See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.121.203601 for additional proofs, which includes Refs. [34,35]

  34. Simon, R.: Peres–Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)

    Article  ADS  Google Scholar 

  35. Holstein, T., Primakoff, H.: Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098 (1940)

    Article  ADS  MATH  Google Scholar 

  36. Gardiner, C.. W., Zoller, P.: Quantum Noise. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  37. Sohail, A., Ahmed, R., Yu, C.S.: Tunable optomechanically induced transparency and fano resonance in optomechanical system with levitated nanosphere. IJTP 57, 2814 (2018)

    ADS  MATH  Google Scholar 

  38. Sohail, A., Ahmed, R., Yu, C.S.: Switchable and enhanced absorption via qubit-mechanical nonlinear interaction in a hybrid optomechanical system. IJTP 60, 739 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Parks, P.C., Hahn, V.: Stability Theory. Prentice Hall, New York (1993)

    MATH  Google Scholar 

  40. Sohail, A., Rana, M., Ikram, S., Munir, T., Hussain, T., Ahmed, R., Yu, C.S.: Enhancement of mechanical entanglement in hybrid optomechanical system. Quantum Inf. Process. 19, 372 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  41. Eisert, J.: Entanglement in Quantum Information Theory. Ph.D. thesis, University of Potsdam, Potsdam, Germany (2001)

  42. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  43. Plenio, M.B.: Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95, 090503 (2008)

    Article  Google Scholar 

  44. Adesso, G., Illuminati, F.: Entanglement in continuous-variable systems: recent advances and current perspectives. J. Phys. A 40, 7821 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Zhang, Z., Scully, M.O., Agarwal, G.S.: Quantum entanglement between two magnon modes via Kerr nonlinearity driven far from equilibrium. Phys. Rev. Res. 1, 023021 (2019)

    Article  Google Scholar 

  46. Wang, Y.P., Zhang, G.Q., Zhang, D., Li, T.F., Hu, C.M., You, J.Q.: Bistability of cavity magnon polaritons. Phys. Rev. Lett. 120, 057202 (2018)

    Article  ADS  Google Scholar 

  47. Wang, Y.P., Zhang, G.Q., Zhang, D., Luo, X.Q., Xiong, W., Wang, S.P., Li, T.F., Hu, C.M., You, J.Q.: Enhanced sideband responses in a PT-symmetric-like cavity magnomechanical system. Phys. Rev. B 94, 224410 (2016)

    Article  ADS  Google Scholar 

  48. Rao, J.W., Kaur, S., Yao, B.M., Edwards, E.R.J., Zhao, Y.T., Fan, X., Xue, D., Silva, T.J., Gui, Y.S., Hu, C.M.: Analogue of dynamic Hall effect in cavity magnon polariton system and coherently controlled logic device. Nat. Commun. 10, 2934 (2019)

    Article  ADS  Google Scholar 

  49. Luo, G.Q., Hu, Z.F., Liang, Y., Yu, L.Y., Sun, L.L.: Development of low profile cavity backed crossed slot antennas for planar integration. IEEE Trans. Antennas Propag. 57, 2972 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Sohail.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohail, A., Hassan, A., Ahmed, R. et al. Generation of enhanced entanglement of directly and indirectly coupled modes in a two-cavity magnomechanical system. Quantum Inf Process 21, 207 (2022). https://doi.org/10.1007/s11128-022-03540-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03540-7

Keywords

Navigation