Skip to main content
Log in

Estimating security of the quantum key distribution from the guesswork

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum key distribution can provide information-theoretic security keys. In practice, the eavesdropper may attack the transmitted quantum state, which makes some information leakage to the generated key. The security of the final key depends on how difficult it is for the eavesdropper to guess the key. The guessing probability is bounded by the trace distance between the practical generated quantum state and the ideal quantum state and hence can be applied to estimate security of quantum key distribution. With the trace distance \(\varepsilon \) and the secret key length n, we prove that the guessing probability can reach the upper bound \(\varepsilon +2^{-n}\) in some special cases. We show that different attacking strategies will give different numbers of guesses, sometimes even completely subversive differences, to get the final key. Our results demonstrate that the appropriate security parameter \(\varepsilon \) should be carefully selected to guarantee the security of the generated key.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding authors on request.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: roceedings of IEEE international conference on computers, systems and signal processing, Bangalore, India. New York: IEEE, 175–179 (1984)

  2. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050 (1999)

    Article  ADS  Google Scholar 

  3. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  4. Renner, R.: Security of quantum key distribution. Int. J. Quantum Inf. 6(01), 1–127 (2008)

    Article  Google Scholar 

  5. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301 (2009)

    Article  ADS  Google Scholar 

  6. Li, H.W., Wang, S., Huang, J.Z., et al.: Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84(6), 062308 (2011)

    Article  ADS  Google Scholar 

  7. Li, H.W., Xu, Z.M., Cai, Q.Y.: Small imperfect randomness restricts security of quantum key distribution. Phys. Rev. A 98, 062325 (2018)

    Article  ADS  Google Scholar 

  8. Kraus, B., Gisin, N., Renner, R.: Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication. Phys. Rev. Lett. 95, 080501 (2005)

    Article  ADS  Google Scholar 

  9. Renner, R., Gisin, N., Kraus, B.: Information-theoretic security proof for quantum-key-distribution protocols. Phys. Rev. A 72, 012332 (2005)

    Article  ADS  Google Scholar 

  10. Portmann, C., Renner, R.: Cryptographic security of quantum key distribution. Preprint at: arxiv.org/abs/1409.3525 (2014)

  11. Portmann, C., Renner, R.: Security in quantum cryptography. Preprint at: arxiv.org/abs/2102.00021 (2021)

  12. Tomamichel, M., Schaffner, C., Smith, A., et al.: Leftover hashing against quantum side information. IEEE Trans. Inf. Theory 57, 5524 (2011)

    Article  MathSciNet  Google Scholar 

  13. Holenstein, T., Renner, R.: On the randomness of independent experiments. IEEE Trans. Inf. Theory 57, 1865 (2011)

    Article  MathSciNet  Google Scholar 

  14. Tomamichel, M., Colbeck, R., Renner, R.: A fully quantum asymptotic equipartition property. IEEE Trans. Inf. Theory 55, 5840 (2009)

    Article  MathSciNet  Google Scholar 

  15. Wang, X.B., Wang, J.T., Qin, J.Q., et al.: Guessing probability in quantum key distribution. NPJ Quantum Inf. 6, 45 (2020)

    Article  ADS  Google Scholar 

  16. Yuen, H.P.: Security of quantum key distribution. IEEE Access 4, 724 (2016)

    Article  Google Scholar 

  17. De, A., Portmann, C., Vidick, T., et al.: Trevisan’s extractor in the presence of quantum side information. SIAM J. Comput. 41, 915 (2009)

    Article  MathSciNet  Google Scholar 

  18. Radhakrishnan, J., Ta-Shma, A.: Bounds for dispersers, extractors, and depth-two superconcentrators. SIAM J. Discret. Math. 13(1), 2–24 (2000)

    Article  MathSciNet  Google Scholar 

  19. Konig, R., Renner, R., Schaffner, C.: The operational meaning of min and max-entropy. IEEE Trans. Inf. Theory 55, 4337 (2009)

    Article  MathSciNet  Google Scholar 

  20. Arnon-Friedman, R.: Reductions to IID in device-independent quantum information processing. PhD thesis, arXiv:1812.10922, (2018)

  21. Tomamichel, M.: A framework for non-asymptotic quantum information theory. PhD thesis, arXiv:1203.2142, (2012)

  22. Tomamichel, M., Lim, C., Gisin, N., et al.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012)

    Article  ADS  Google Scholar 

  23. Dupuis, F., Fawzi, O., Renner, R.: Entropy accumulation. Commun. Math. Phys. 379, 867–913 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  24. Zhang, Y., Knill, E., Bierhorst, P.: Certifying quantum randomness by probability estimation. Phys. Rev. A 98(4), 040304 (2018)

    Article  ADS  Google Scholar 

  25. Qian, Y.J., Li, H.W., He, D.Y., et al.: Countermeasure against probabilistic blinding attack in practical quantum key distribution systems. Chin. Phys. B 24, 090305 (2015)

    Article  ADS  Google Scholar 

  26. Massey, J.L.: Guessing and entropy. In: proceedings of the IEEE international symposium on information theory. 204 (1994)

  27. Pliam, J.: The disparity between work and entropy in cryptology. Cryptology ePrint Archive, Report 1998/024, (1998)

  28. Hanson, E.P., Katariya, V., Datta, N., et al.: Guesswork with quantum side information. arXiv:2001.03598, (2020)

Download references

Acknowledgements

The author would like to thank Yan-Bao Zhang, Christopher Portmann, Marcin Pawlowski, Rong Wang and Zhen-Qiang Yin for their helpful discussions. This work is supported by the National Natural Science Foundation of China (Grant No. U2130205), the National Key Research and Development Program of China (Grant No. 2020YFA0309702) and the Natural Science Foundation of Henan (Grant No. 202300410532).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wei Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HW., Shi, JH., Cai, QY. et al. Estimating security of the quantum key distribution from the guesswork. Quantum Inf Process 21, 142 (2022). https://doi.org/10.1007/s11128-022-03487-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03487-9

Keywords

Navigation