Skip to main content
Log in

Clustering by quantum annealing on the three-level quantum elements qutrits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Clustering is grouping of data by the proximity of some properties. We report on the possibility of increasing the efficiency of clustering of points in a plane using artificial quantum neural networks after the replacement of the two-level neurons called qubits represented by the spins S = 1/2 by the three-level neurons called qutrits represented by the spins S = 1. The problem has been solved by the slow adiabatic change of the Hamiltonian in time. The methods for controlling a qutrit system using projection operators have been developed and the numerical simulation has been performed. The Hamiltonians for two well-known clustering methods, one-hot encoding and k-means, have been built. The first method has been used to partition a set of six points into three or two clusters and the second method, to partition a set of nine points into three clusters and seven points into four clusters. The simulation has shown that the clustering problem can be effectively solved on qutrits represented by the spins S = 1. The advantages of clustering on qutrits over that on qubits have been demonstrated. In particular, the number of qutrits required to represent \(N\) data points is smaller than the number of qubits by a factor of \(\log_{2} N/\log_{3} N\). For qutrits, the simplest is to partition the data points into three clusters rather than two ones. At the data partition into more than three clusters, it has been proposed to number the clusters by the numbers of states of the corresponding multi-spin subsystems, instead of using the numbers of individual spins. This reduces even more the number of qutrits (\(N\log_{3} K\) instead of \(NK\)) required to implement the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195–202 (2017)

    Article  ADS  Google Scholar 

  2. Dunjko, V., Briegel, H.J.: Machine learning & artificial intelligence in the quantum domain. Rep. Prog. Phys. 81, 074001 (2018)

    Article  ADS  Google Scholar 

  3. Hunt, B.E.: Artificial Intelligence. Academic Press, New York (1975)

    Book  Google Scholar 

  4. Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seeding. Stanford. http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf (2006). Accessed 2006

  5. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint. https://arxiv.org/pdf/1307.0411.pdf (2013). Accessed 4 November 2013

  6. Bauckhage, C., Brito, E., Cvejoski, K., Ojeda, C., Sifa, R.,Wrobel, S.: Ising Models for Biary Clustering via Adiabatic Quantum Computing. In: Proceeding of the EMMCVPR. Volume 10746 of LNCS., Springer (2017)

  7. Kumar, V., Bass, G., Tomlin, C., Dulny, J.: Quantum annealing for combinatorial clustering. Quant. Inf. Process. 17(39), 1–14 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Wei, A.Y., Naik, P., Harrow, A.W., Thaler, J.: Quantum algorithms for jet clustering. Phys. Rev. D 101, 094015 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  9. Mendelson, S.S., Strand, R.W., Oldaker IV, G.B., Farinholt, J.M.: Quantum-Assisted Clustering Algorithms for NISQ-Era Devices. arXiv preprint. https://arxiv.org/pdf/1904.08992.pdf (2019). Accessed 27 June 2019

  10. Arthur, D., Prasanna, D.: Balanced k-means clustering on an adiabatic quantum computer. Quant. Inf. Process. 20(9), 1–30 (2021)

    Article  MathSciNet  Google Scholar 

  11. Pires, D., Omar, Y., Seixas, J.: Adiabatic Quantum Algorithm for Multijet Clustering in High Energy Physics. arXiv preprint. https://arxiv.org/pdf/2012.14514.pdf (2020). Accessed 28 December 2020

  12. Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Harrow, A.W.: Small quantum computers and large classical data sets. arXiv preprint. https://arxiv.org/pdf/2004.00026.pdf (2020). Accessed 31 March 2020

  14. Tomesh, T., Gokhale, P., Anschuetz, E.R., Chong, F.T.: Coreset clustering on small quantum computers. Electronics 10, 1690 (2021)

    Article  Google Scholar 

  15. Tan, B., Lemonde, M.A., Thanasilp, S., Tangpanitanon, J., Angelakis, D.G.: Qubit-efficient encoding schemes for binary optimisation problems. Quantum 5, 454 (2021)

    Article  Google Scholar 

  16. Das, R., Mitra, A., Kumar, S.V., Kumar, A.: Quantum information processing by NMR: preparation of pseudopure states and implementation of unitary operations in a single-qutrit system. Int. J. Quant. Inform. 1(3), 387–394 (2003)

    Article  Google Scholar 

  17. Klimov, A.B., Guzman, R., Retamal, J.C., Saavedra, C.: Qutrit quantum computer with trapped ions. Phys. Rev. A 67, 062313 (2003)

    Article  ADS  Google Scholar 

  18. Tamir, B.: Quantum query complexity for qutrits. Phys. Rev. A 77, 022326 (2008)

    Article  ADS  Google Scholar 

  19. Zobov, V.E., Pekhterev, D.I.: Adder on ternary base elements for a quantum computer. JETP Lett. 89(5), 260–263 (2009)

    Article  ADS  Google Scholar 

  20. Zobov, V.E., Shauro, V.P.: On time-optimal NMR control of states of qutrits represented by quadrupole nuclei with the spin I= 1. JETP. 113(2), 181–191 (2011)

    Article  ADS  Google Scholar 

  21. Zobov, V.E., Ermilov, A.S.: Implementation of a quantum adiabatic algorithm for factorization on two qudits. JETP. 114(6), 923–932 (2012)

    Article  ADS  Google Scholar 

  22. Zobov, V.E., Pichkovskiy, I.S.: Sequences of selective rotation operators to engineer interactions for quantum annealing on three qutrits. Proc. SPIE (2019). https://doi.org/10.1117/12.2521253

    Article  Google Scholar 

  23. Choi, S., Yao, N.Y., Lukin, M.D.: Dynamical engineering of interactions in qudit ensembles. Phys. Rev. Lett. 119, 183603 (2017)

    Article  ADS  Google Scholar 

  24. O’Keeffe, M.F., Horesh, L., Barry, J.F., Braje, D.A., Chuang, I.L.: Hamiltonian engineering with constrained optimization for quantum sensing and control. New. J. Phys. 21, 023015 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  25. Wang, Y., Hu, Z., Sanders, B.C., Kais, S.: Qudits and high-dimensional quantum computing. Front. Phys. 8, 479 (2020)

    Google Scholar 

  26. Morvan, A., Ramasesh, V.V., Blok, M.S., Kreikebaum, J.M., O’Brien, K., Chen, L., Mitchell, B.K., Naik, R.K., Santiago, D.I., Siddiqi, I.: Qutrit randomized benchmarking. Phys. Rev. Lett. 126, 210504 (2021)

    Article  ADS  Google Scholar 

  27. Zobov, V., Pichkovskiy, I.: Associative memory on qutrits by means of quantum annealing. Quant. Inf. Process. 19(9), 1–12 (2020)

    Article  Google Scholar 

  28. Xu, Z., Yin, Z.Q., Han, Q., Li, T.: Quantum information processing with closely-spaced diamond color centers in strain and magnetic fields. Opt. Mater. Express. 9(12), 4654–4668 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Theoretical Physics and Mathematics Advancement Foundation “BASIS” #20-1-5-41-1. We are grateful for their trust and assistance in research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Pichkovskiy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43 kb)

Supplementary file2 (DOCX 301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zobov, V.E., Pichkovskiy, I.S. Clustering by quantum annealing on the three-level quantum elements qutrits. Quantum Inf Process 21, 144 (2022). https://doi.org/10.1007/s11128-022-03482-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03482-0

Keywords

Navigation