Skip to main content
Log in

Demonstration of quantum Darwinism on quantum computer

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

It is well known that environmental decoherence is a crucial barrier in realizing various quantum information processing tasks; on the other hand, it plays a pivotal role in explaining how a quantum system’s fragile state leads to a robust classical state. Zurek (Nat Phys 5(3):181–188, 2009) was the first to develop the theory which successfully describes the emergence of classical objectivity of quantum systems using decoherence, introduced by the environment. Here, we consider an n-qubit generalized quantum circuit for the quantum system–environment interaction model, where the first qubit represents the quantum system, and the rest are for the environmental fragments. This quantum circuit is implemented on ibmq_athens and ibmq_16_melbourne for \(n = 2, 3, 4, 5, 6\). Its accuracy is checked using quantum state tomography and enhanced using the quantum error mitigation procedure. The reconstructed density matrices are used to investigate quantum-classical correlation and the mutual information between the quantum system and the environment. The investigation proves the quantum Darwinism principle when the quantum circuits are executed on the noise-less simulator; however, it shows the unaccountable behavior when implemented on the real quantum devices. The results via the noise-less simulator successfully prove that the environmental fragment size and the interaction strength play a crucial role in the emergence of classicality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

The code base created to run these simulations and the related supplementary data could be made available to any reader upon reasonable request.

References

  1. Schrödinger, E.: The current situation in quantum mechanics. Science 23(50), 844–849 (1935)

    MATH  Google Scholar 

  2. Maudlin, T.: Quantum Non-locality and Relativity: Metaphysical Intimations of Modern Physics. Wiley, Hoboken (2011)

    Book  Google Scholar 

  3. Griffiths, R.B.: The consistent histories approach to quantum mechanics (2014)

  4. Zurek, W.H.: Quantum Darwinism. Nat. Phys. 5(3), 181–188 (2009)

    Article  Google Scholar 

  5. Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J., Kupsch, J., Stamatescu, I.-O.: Decoherence and the appearance of a classical world in quantum theory (2013)

  6. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75(3), 715 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  7. Schlosshauer, M.A.: Decoherence: And the Quantum-to-Classical Transition. Springer, Berlin (2007)

    Google Scholar 

  8. Korbicz, J., Horodecki, P., Horodecki, R.: Objectivity in a noisy photonic environment through quantum state information broadcasting. Phys. Rev. Lett. 112(12), 120402 (2014)

    Article  ADS  Google Scholar 

  9. Riedel, C.J., Zurek, W.H.: Quantum Darwinism in an everyday environment: huge redundancy in scattered photons. Phys. Rev. Lett. 105(2), 020404 (2010)

    Article  ADS  Google Scholar 

  10. Blume-Kohout, R., Zurek, W.H.: Quantum Darwinism: entanglement, branches, and the emergent classicality of redundantly stored quantum information. Phys. Rev. A 73(6), 062310 (2006)

    Article  ADS  Google Scholar 

  11. Zurek, W.H.: Quantum theory of the classical: quantum jumps, Born’s rule and objective classical reality via quantum Darwinism. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376(2123), 20180107 (2018)

    Article  ADS  Google Scholar 

  12. QISKit Python SDK. https://github.com/qutip/qiskit-sdk-py

  13. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86(1), 153 (2014)

    Article  ADS  Google Scholar 

  14. Ku, H..-Y.., Lambert, N., Chan, F..-J.., Emary, C., Chen, Y..-N.., Nori, F.: Experimental test of non-macrorealistic cat states in the cloud. NPJ Quantum Inf. 6(1), 1–9 (2020)

    Article  Google Scholar 

  15. Behera, B.K., Panigrahi, P.K., et al.: A simulational model for witnessing quantum effects of gravity using IBM quantum computer. Quantum Inf. Process. 19(4), 1–12 (2020)

    MathSciNet  Google Scholar 

  16. Lloyd, S.: Universal quantum simulators. Science 273(5278), 1073–1078 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  17. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017)

    Article  ADS  Google Scholar 

  18. Shenoy, K.S., Sheth, D.Y., Behera, B.K., Panigrahi, P.K.: Demonstration of a measurement-based adaptation protocol with quantum reinforcement learning on the IBM Q experience platform. Quantum Inf. Process. 19(5), 1–13 (2020)

    Article  MathSciNet  Google Scholar 

  19. Montanaro, A.: Quantum algorithms: an overview. NPJ Quantum Inf. 2(1), 1–8 (2016)

    Article  Google Scholar 

  20. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  21. Mandviwalla, A., Ohshiro, K., Ji, B.: Implementing Grover’s algorithm on the IBM quantum computers. In: 2018 IEEE International Conference on Big Data (Big Data). IEEE, pp. 2531–2537 (2018)

  22. Gisin, N., Thew, R.: Quantum communication. Nat. Photon. 1(3), 165–171 (2007)

    Article  ADS  Google Scholar 

  23. Behera, B.K., Reza, T., Gupta, A., Panigrahi, P.K.: Designing quantum router in IBM quantum computer. Quantum Inf. Process. 18(11), 1–13 (2019)

    Article  Google Scholar 

  24. Barik, S., Warke, A., Behera, B.K., Panigrahi, P.K.: Deterministic hierarchical remote state preparation of a two-qubit entangled state using brown et al. state in a noisy environment. IET Quant. Commun. 1(2), 49–54 (2020)

  25. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  Google Scholar 

  26. Wille, R., Burgholzer, L., Zulehner, A.: Mapping quantum circuits to IBM QX architectures using the minimal number of swap and h operations. In: 2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE, pp. 1–6 (2019)

  27. Azad, U., Papneja, A., Saini, R., Behera, B.K., Panigrahi, P.K.: Circuit centric quantum architecture design. IET Quantum Commun. 2(1), 14–25 (2021)

    Article  Google Scholar 

  28. Zulehner, A., Paler, A., Wille, R.: An efficient methodology for mapping quantum circuits to the IBM QX architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38(7), 1226–1236 (2018)

    Article  Google Scholar 

  29. Anand, A., Behera, B.K., Panigrahi, P.K.: Solving Diner’s dilemma game, circuit implementation and verification on the IBM quantum simulator. Quantum Inf. Process. 19(6), 1–14 (2020)

    Article  MathSciNet  Google Scholar 

  30. Eisert, J., Wilkens, M., Lewenstein, M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83(15), 3077 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  31. Aspuru-Guzik, A., Walther, P.: Photonic quantum simulators. Nat. Phys. 8(4), 285–291 (2012)

    Article  Google Scholar 

  32. Chen, M.-C., Zhong, H.-S., Li, Y., Wu, D., Wang, X.-L., Li, L., Liu, N.-L., Lu, C.-Y., Pan, J.-W.: Emergence of classical objectivity of quantum Darwinism in a photonic quantum simulator. Sci. Bull. 64(9), 580–585 (2019)

    Article  Google Scholar 

  33. Zwolak, M., Quan, H., Zurek, W.H.: Redundant imprinting of information in nonideal environments: objective reality via a noisy channel. Phys. Rev. A 81(6), 062110 (2010)

    Article  ADS  Google Scholar 

  34. IBM Quantum Experience. https://www.ibm.com/quantum-computing/technology/experience/

  35. Altepeter, J.B., James, D.F., Kwiat, P.G.: 4 Qubit Quantum State Tomography. Springer, Berlin (2004)

    Book  Google Scholar 

  36. Witten, E.: A mini-introduction to information theory. La Rivista del Nuovo Cimento 43(4), 187–227 (2020)

    Article  ADS  Google Scholar 

  37. Zwolak, M., Zurek, W.H.: Complementarity of quantum discord and classically accessible information. Sci. Rep. 3(1), 1–8 (2013)

    Article  Google Scholar 

  38. Zurek, W.H.: Einselection and Decoherence from an Information Theory Perspective. Springer, Berlin (2002)

    Book  Google Scholar 

  39. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1), 017901 (2001)

    Article  ADS  Google Scholar 

  40. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34(35), 6899 (2001)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

R.S. would like to thank IIT (ISM) Dhanbad and Bikash’s Quantum (OPC) Pvt. Ltd. for providing hospitality during the course of the project work. R.S. acknowledges Prof. Sridhar Sahu for providing full support during this work. The authors acknowledge the support of IBM Quantum Experience. The views expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM Experience team.

Author information

Authors and Affiliations

Authors

Contributions

RS and BKB conceived this research and designed the circuit; RS carried out the experiments and interpret the data; RS wrote the code for experiment and drew all figures and tables. All authors read and approved the final manuscript.

Ethics declarations

Conflict of interest

The authors have no conflict financial and non-financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, R., Behera, B.K. Demonstration of quantum Darwinism on quantum computer. Quantum Inf Process 21, 129 (2022). https://doi.org/10.1007/s11128-022-03471-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03471-3

Keywords

Navigation