Skip to main content
Log in

A theoretical analysis on quantum memory parameters in ultracold \(^{87}\)Rb and \(^{133}\)Cs alkali species using EIT protocol in the presence of structured light

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we present a theoretical analysis on the study of quantum memory (QM) parameters in a three-level \(\Lambda \)-configuration in the presence of Laguerre–Gaussian (LG) beam for Rubidium-87 and Cesium-133 alkali species in ultracold two-dimensional magneto-optical trap system using the electromagnetically induced transparency (EIT) protocol. We employ semiclassical density matrix approach to solve the three-level atomic system, and quantum memory parameters such as optical depth (OD), group velocity(\(v_g\)), EIT spectral width (\(\Delta f_\text {EIT}\)) and delay bandwidth product (DBP) are estimated and compared for both the species in the presence of various modes of LG beams in detail. We report on predicting high OD of approximately 2323 and 3052 for Rb and Cs species, respectively. In addition to the above, we estimated lowest group velocity \(v_g= 5.07\hbox { ms}^{-1}\) and highest DBP of 157. EIT spectral width of 503.03 kHz is also reported which has an immense application in broadband quantum communication. This study establishes the vast advantage of LG beams as coupling light over the conventional Gaussian beams by considering the inhomogeneous effects present in the LG modes. Furthermore, it provides insight for coherent storage of quantum information for quantum computation and quantum communication purposes and also to carry out the experiments with various LG modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study are included in this published article.

References

  1. Lvovsky, A.I., Sanders, B.C., Tittel, W.: Optical quantum memory. Nat. Photon. 3(12), 706–714 (2009). https://doi.org/10.1038/nphoton.2009.231

    Article  ADS  Google Scholar 

  2. Ma, L., Slattery, O., Tang, X.: Optical quantum memory based on electromagnetically induced transparency. J. Opt. 19(4), 043001 (2017). https://doi.org/10.1088/2040-8986/19/4/043001

    Article  ADS  Google Scholar 

  3. Bussières, F., Sangouard, N., Afzelius, M., de Riedmatten, H., Simon, C., Tittel, W.: Prospective applications of optical quantum memories. J. Mod. Opt. 60(18), 1519–1537 (2013). https://doi.org/10.1080/09500340.2013.856482

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Duan, L.-M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413–418 (2001). https://doi.org/10.1038/35106500

    Article  ADS  Google Scholar 

  5. Heshami, K., England, D.G., Humphreys, P.C., Bustard, P.J., Acosta, V.M., Nunn, J., Sussman, B.J.: Quantum memories: emerging applications and recent advances. J. Mod. Opt. 63(20), 2005–2028 (2016). https://doi.org/10.1080/09500340.2016.1148212

    Article  ADS  Google Scholar 

  6. Sangouard, N., Simon, C., de Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83(1), 33–80 (2011). https://doi.org/10.1103/revmodphys.83.33

    Article  ADS  Google Scholar 

  7. Hammerer, K., Sørensen, A.S., Polzik, E.S.: Quantum interface between light and atomic ensembles. Rev. Mod. Phys. 82(2), 1041–1093 (2010). https://doi.org/10.1103/revmodphys.82.1041

    Article  ADS  Google Scholar 

  8. Julsgaard, B., Sherson, J., Cirac, J.I., Fiurášek, J., Polzik, E.S.: Experimental demonstration of quantum memory for light. Nature 432(7016), 482–486 (2004). https://doi.org/10.1038/nature03064

    Article  ADS  Google Scholar 

  9. Cho, Y.-W., Kim, Y.-H.: Storage and retrieval of thermal light in warm atomic vapor. Phys. Rev. A. (2010). https://doi.org/10.1103/physreva.82.033830

    Article  Google Scholar 

  10. Hockel, D., Benson, O.: Electromagnetically induced transparency in cesium vapor with probe pulses on the single-photon level. Physical Review Letters 105(15) (2010). https://doi.org/10.1103/physrevlett.105.153605

  11. Chanelière, T., Matsukevich, D.N., Jenkins, S.D., Lan, S.-Y., Kennedy, T.A.B., Kuzmich, A.: Storage and retrieval of single photons transmitted between remote quantum memories. Nature 438(7069), 833–836 (2005). https://doi.org/10.1038/nature04315

    Article  ADS  Google Scholar 

  12. Hsiao, Y.-F., Tsai, P.-J., Chen, H.-S., Lin, S.-X., Hung, C.-C., Lee, C.-H., Chen, Y.-H., Chen, Y.-F., Yu, I.A., Chen, Y.-C.: Highly efficient coherent optical memory based on electromagnetically induced transparency. Phys. Rev. Lett. (2018). https://doi.org/10.1103/physrevlett.120.183602

    Article  Google Scholar 

  13. Heinze, G., Hubrich, C., Halfmann, T.: Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Phys. Rev. Lett. (2013). https://doi.org/10.1103/physrevlett.111.033601

    Article  Google Scholar 

  14. Zhang, W., Ding, D.-S., Dong, M.-X., Shi, S., Wang, K., Liu, S.-L., Li, Y., Zhou, Z.-Y., Shi, B.-S., Guo, G.-C.: Experimental realization of entanglement in multiple degrees of freedom between two quantum memories. Nat. Commun. (2016). https://doi.org/10.1038/ncomms13514

    Article  Google Scholar 

  15. Reim, K.F., Nunn, J., Jin, X.-M., Michelberger, P.S., Champion, T.F.M., England, D.G., Lee, K.C., Kolthammer, W.S., Langford, N.K., Walmsley, I.A.: Multipulse addressing of a raman quantum memory: configurable beam splitting and efficient readout. Phys. Rev. Lett. (2012). https://doi.org/10.1103/physrevlett.108.263602

    Article  Google Scholar 

  16. Rastogi, A., Saglamyurek, E., Hrushevskyi, T., Hubele, S., LeBlanc, L.J.: Discerning quantum memories based on electromagnetically-induced-transparency and autler-townes-splitting protocols. Phys. Rev. A (2019). https://doi.org/10.1103/physreva.100.012314

    Article  Google Scholar 

  17. Reim, K.F., Nunn, J., Lorenz, V.O., Sussman, B.J., Lee, K.C., Langford, N.K., Jaksch, D., Walmsley, I.A.: Towards high-speed optical quantum memories. Nature Photonics 4(4), 218–221 (2010) arXiv:0912.2970 [quant-ph]. https://doi.org/10.1038/nphoton.2010.30

  18. Hosseini, M., Sparkes, B.M., Campbell, G.T., Lam, P.K., Buchler, B.C.: Storage and manipulation of light using a raman gradient-echo process. J. Phys. B: At. Mol. Opt. Phys. 45(12), 124004 (2012). https://doi.org/10.1088/0953-4075/45/12/124004

    Article  ADS  Google Scholar 

  19. Dong, M.X., Ding, D.S., Yu, Y.C., Ye, Y.H., Zhang, W.H., Li, E.Z., Zeng, L., Zhang, K., Li, D.C., Guo, G.C., Shi, B.S.: Temporal wheelers delayed choice experiment based on cold atomic quantum memory. NPJ Quant. Inform. (2020). https://doi.org/10.1038/s41534-020-00301-1

    Article  Google Scholar 

  20. Phillips, D.F., Fleischhauer, A., Mair, A., Walsworth, R.L., Lukin, M.D.: Storage of light in atomic vapor. Phys. Rev. Lett. 86(5), 783–786 (2001). https://doi.org/10.1103/physrevlett.86.783

    Article  ADS  Google Scholar 

  21. Harris, S.E., Field, J.E., Imamoğlu, A.: Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64(10), 1107–1110 (1990). https://doi.org/10.1103/physrevlett.64.1107

    Article  ADS  Google Scholar 

  22. Boller, K.-J., Imamoğlu, A., Harris, S.E.: Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66(20), 2593–2596 (1991). https://doi.org/10.1103/physrevlett.66.2593

    Article  ADS  Google Scholar 

  23. Harris, S.E.: Electromagnetically induced transparency. Phys. Today 50(7), 36–42 (1997). https://doi.org/10.1063/1.881806

    Article  Google Scholar 

  24. Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77(2), 633–673 (2005). https://doi.org/10.1103/revmodphys.77.633

    Article  ADS  Google Scholar 

  25. Schmidt, O., Wynands, R., Hussein, Z., Meschede, D.: Steep dispersion and group velocity below \(\frac{c}{3000}\) in coherent population trapping. Phys. Rev. A 53, 27–30 (1996). https://doi.org/10.1103/PhysRevA.53.R27

    Article  ADS  Google Scholar 

  26. Hau, L.V., Harris, S.E., Dutton, Z., Behroozi, C.H.: Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397(6720), 594–598 (1999). https://doi.org/10.1038/17561

    Article  ADS  Google Scholar 

  27. Afzelius, M., Gisin, N., de Riedmatten, H.: Quantum memory for photons. Phys. Today 68(12), 42–47 (2015). https://doi.org/10.1063/pt.3.3021

    Article  Google Scholar 

  28. Kash, M.M., Sautenkov, V.A., Zibrov, A.S., Hollberg, L., Welch, G.R., Lukin, M.D., Rostovtsev, Y., Fry, E.S., Scully, M.O.: Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett. 82, 5229–5232 (1999). https://doi.org/10.1103/PhysRevLett.82.5229

    Article  ADS  Google Scholar 

  29. Novikova, I., Walsworth, R.L., Xiao, Y.: Electromagnetically induced transparency-based slow and stored light in warm atoms. Laser and Photon Rev. 6(3), 333–353 (2012). https://doi.org/10.1002/lpor.201100021

    Article  ADS  Google Scholar 

  30. Bhushan, S., Easwaran, R.K.: Theoretical design for generation of slow light in a two-dimensional magneto optical trap using electromagnetically induced transparency. Appl. Opt. 56(13), 3817–3823 (2017). https://doi.org/10.1364/AO.56.003817

    Article  ADS  Google Scholar 

  31. Bhushan, S., Chauhan, V.S., Easwaran, R.K.: Ultracold rydberg atoms for efficient storage of terahertz frequency signals using electromagnetically induced transparency. Phys. Lett. A 382(48), 3500–3504 (2018). https://doi.org/10.1016/j.physleta.2018.10.006

    Article  ADS  Google Scholar 

  32. Lukin, M.D., Fleischhauer, M., Zibrov, A.S., Robinson, H.G., Velichansky, V.L., Hollberg, L., Scully, M.O.: Spectroscopy in dense coherent media: line narrowing and interference effects. Phys. Rev. Lett. 79(16), 2959–2962 (1997). https://doi.org/10.1103/physrevlett.79.2959

    Article  ADS  Google Scholar 

  33. Chauhan, V.S., Manchaiah, D., Bhushan, S., Kumar, R., Easwaran, R.K.: Theoretical design of quantum memory unit for under water quantum communication using electromagnetically induced transparency protocol in ultracold 87rb atoms. Int. J. Quant. Inform. 18(05), 2050027 (2020). https://doi.org/10.1142/s0219749920500276

    Article  MATH  Google Scholar 

  34. Akin, T.G., Krzyzewski, S.P., Marino, A.M., Abraham, E.R.I.: Electromagnetically induced transparency with laguerre-gaussian modes in ultracold rubidium. Opt. Commun. 339, 209–215 (2015). https://doi.org/10.1016/j.optcom.2014.11.049

    Article  Google Scholar 

  35. Chanu, S.R., Natarajan, V.: narrowing of resonances in electromagnetically induced transparency and absorption using a laguerregaussian control beam. Opt. Commun. 295, 150–154 (2013). https://doi.org/10.1016/j.optcom.2013.01.042

    Article  ADS  Google Scholar 

  36. Akin, T.G., Krzyzewski, S.P., Holtfrerich, M.W., Abraham, E.R.I.: Optimization of electromagnetically induced transparency by changing the radial size of laguerre-gaussian laser modes. J. Opt. Soc. Am. B 34(6), 1286–1293 (2017). https://doi.org/10.1364/JOSAB.34.001286

    Article  ADS  Google Scholar 

  37. Chauhan, V.S., Kumar, R., Manchaiah, D., Kumar, P., Easwaran, R.K.: Narrowing of electromagnetically induced transparency by using structured coupling light in 85rb atomic vapor medium. Laser Phys. 30(6), 065203 (2020). https://doi.org/10.1088/1555-6611/ab8568

    Article  ADS  Google Scholar 

  38. Hamedi, H.R., Ruseckas, J., Juzeliūnas, G.: Exchange of optical vortices using an electromagnetically-induced-transparency-based four-wave-mixing setup. Phys. Rev. A (2018). https://doi.org/10.1103/physreva.98.013840

    Article  Google Scholar 

  39. Shi, B.-S., Ding, D.-S., Zhang, W.: Quantum storage of orbital angular momentum entanglement in cold atomic ensembles. J. Phys. B: At. Mol. Opt. Phys. 51(3), 032004 (2018). https://doi.org/10.1088/1361-6455/aa9b95

    Article  ADS  Google Scholar 

  40. Ruseckas, J., Mekys, A., Juzeliūnas, G.: Slow polaritons with orbital angular momentum in atomic gases. Phys. Rev. A (2011). https://doi.org/10.1103/physreva.83.023812

    Article  Google Scholar 

  41. Han, L., Cao, M., Liu, R., Liu, H., Guo, W., Wei, D., Gao, S., Zhang, P., Gao, H., Li, F.: Identifying the orbital angular momentum of light based on atomic ensembles. EPL (Europhysics Letters) 99(3), 34003 (2012). https://doi.org/10.1209/0295-5075/99/34003

    Article  ADS  Google Scholar 

  42. Qiu, J., Wang, Z., Yu, B.: Generation of new structured beams via spatially dependent transparency. Quant. Inform. Process. (2019). https://doi.org/10.1007/s11128-019-2278-6

    Article  Google Scholar 

  43. Anupriya, J., Ram, N., Pattabiraman, M.: Hanle electromagnetically induced transparency and absorption resonances with a laguerre gaussian beam. Phys. Rev. A (2010). https://doi.org/10.1103/physreva.81.043804

    Article  Google Scholar 

  44. Wang, Z., Zhang, Y., Paspalakis, E., Yu, B.: Efficient spatiotemporal-vortex four-wave mixing in a semiconductor nanostructure. Phys. Rev. A 102, 063509 (2020). https://doi.org/10.1103/PhysRevA.102.063509

    Article  ADS  Google Scholar 

  45. Yu, C., Wang, Z.: Engineering helical phase via four-wave mixing in the ultraslow propagation regime. Phys. Rev. A (2021). https://doi.org/10.1103/physreva.103.013518

    Article  Google Scholar 

  46. Qiu, J., Wang, Z., Ding, D., Huang, Z., Yu, B.: Control of space-dependent four-wave mixing in a four-level atomic system. Phys. Rev. A (2020). https://doi.org/10.1103/physreva.102.033516

    Article  Google Scholar 

  47. Chen, J., Wang, Z., Yu, B.: Spatially dependent hyper-raman scattering in five-level cold atoms. Opt. Express 29(7), 10914 (2021). https://doi.org/10.1364/oe.420015

    Article  ADS  Google Scholar 

  48. Qiu, J., Wang, Z., Ding, D., Li, W., Yu, B.: Highly efficient vortex four-wave mixing in asymmetric semiconductor quantum wells. Opt. Express 28(3), 2975 (2020). https://doi.org/10.1364/oe.379245

    Article  ADS  Google Scholar 

  49. Zhang, Y., Wang, Z., Qiu, J., Hong, Y., Yu, B.: Spatially dependent four-wave mixing in semiconductor quantum wells. Appl. Phys. Lett. 115(17), 171905 (2019). https://doi.org/10.1063/1.5121275

    Article  Google Scholar 

  50. Hong, Y., Wang, Z., Ding, D., Yu, B.: Ultraslow vortex four-wave mixing via multiphoton quantum interference. Opt. Express 27(21), 29863 (2019). https://doi.org/10.1364/oe.27.029863

    Article  ADS  Google Scholar 

  51. Franke-Arnold, S., Allen, L., Padgett, M.: Advances in optical angular momentum. Laser and Photon. Rev. 2(4), 299–313 (2008). https://doi.org/10.1002/lpor.200810007

    Article  ADS  Google Scholar 

  52. Ding, D.-S., Zhang, W., Zhou, Z.-Y., Shi, S., Pan, J.-S., Xiang, G.-Y., Wang, X.-S., Jiang, Y.-K., Shi, B.-S., Guo, G.-C.: Toward high-dimensional-state quantum memory in a cold atomic ensemble. Phys. Rev. A (2014). https://doi.org/10.1103/physreva.90.042301

    Article  Google Scholar 

  53. Yao, A.M., Padgett, M.J.: Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3(2), 161–204 (2011). https://doi.org/10.1364/AOP.3.000161

    Article  Google Scholar 

  54. Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes. Phys. Rev. A 45(11), 8185–8189 (1992). https://doi.org/10.1103/physreva.45.8185

    Article  ADS  Google Scholar 

  55. Steck, D.: Rubidium 87 d line data (2003)

  56. Steck, D.: Cesium d line data (2010)

  57. Jiang, Y., Mei, Y., Zou, Y., Zuo, Y., Du, S.: Intracavity cold atomic ensemble with high optical depth. Rev. Sci. Instrum. 90(1), 013105 (2019). https://doi.org/10.1063/1.5065431

    Article  ADS  Google Scholar 

  58. Zhang, S., Chen, J.F., Liu, C., Zhou, S., Loy, M.M.T., Wong, G.K.L., Du, S.: A dark-line two-dimensional magneto-optical trap of 85rb atoms with high optical depth. Rev. Sci. Instrum. 83(7), 073102 (2012). https://doi.org/10.1063/1.4732818

    Article  ADS  Google Scholar 

  59. Harris, S.E., Hau, L.V.: Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611–4614 (1999). https://doi.org/10.1103/PhysRevLett.82.4611

    Article  ADS  Google Scholar 

  60. Tidstrom, J., Janes, P., Andersson, L.M.: Delay-bandwidth product of electromagnetically induced transparency media. Phys. Rev. A (2007). https://doi.org/10.1103/physreva.75.053803

    Article  Google Scholar 

  61. Zeng, L., Dong, M.-X., Ye, Y.-H., Yu, Y.-C., Li, E.-Z., Zhang, W.-H., Zhang, K., Ding, D.-S., Shi, B.-S.: Modulation of the optical beam with orbital angular momentum in hot atomic rubidium vapor. AIP Adv. 10(1), 015135 (2020). https://doi.org/10.1063/1.5131179

    Article  ADS  Google Scholar 

  62. Moseley, R.R., Shepherd, S., Fulton, D.J., Sinclair, B.D., Dunn, M.H.: Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing. Phys. Rev. Lett. 74, 670–673 (1995). https://doi.org/10.1103/PhysRevLett.74.670

    Article  ADS  Google Scholar 

  63. Moseley, R.R., Shepherd, S., Fulton, D.J., Sinclair, B.D., Dunn, M.H.: Electromagnetically-induced focusing. Phys. Rev. A 53, 408–415 (1996). https://doi.org/10.1103/PhysRevA.53.408

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Vikas Singh Chauhan for the fruitful discussion and timely inputs for the preparation of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavan K. Easwaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manchaiah, D., Kumar, R. & Easwaran, R.K. A theoretical analysis on quantum memory parameters in ultracold \(^{87}\)Rb and \(^{133}\)Cs alkali species using EIT protocol in the presence of structured light. Quantum Inf Process 21, 110 (2022). https://doi.org/10.1007/s11128-022-03449-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03449-1

Keywords

Navigation