Abstract
Deep neural networks (DNN) can be applied at the post-processing stage for the improvement of the results of quantum computations on noisy intermediate-scale quantum (NISQ) processors. Here, we propose a method based on this idea, which is most suitable for digital quantum simulation characterized by the periodic structure of quantum circuits consisting of Trotter steps. A key ingredient of our approach is that it does not require any data from a classical simulator at the training stage. The network is trained to transform data obtained from quantum hardware with artificially increased Trotter steps number (noise level) toward the data obtained without such an increase. The additional Trotter steps are fictitious, i.e., they contain negligibly small rotations and, in the absence of hardware imperfections, reduce essentially to the identity gates. This preserves, at the training stage, information about relevant quantum circuit features. Two particular examples are considered that are the dynamics of the transverse-field Ising chain and XY spin chain, which were implemented on two real five-qubit IBM Q processors. A significant error reduction is demonstrated as a result of the DNN application that allows us to effectively increase quantum circuit depth in terms of Trotter steps.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Raw data for this study were generated by running quantum circuits via QISKIT on real quantum processors IBM Athens and Bogota or simulator. The datasets generated during the current study are available from the corresponding author on request.
References
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)
Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549(7671), 242–246 (2017)
Barends, R., Lamata, L., Kelly, J., García-Álvarez, L., Fowler, A.G., Megrant, A., Jeffrey, E., White, T.C., Sank, D., Mutus, J.Y.: Digital quantum simulation of fermionic models with a superconducting circuit. Nat. Commun. 6(1), 1–7 (2015)
Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656 (1996)
Zhukov, A.A., Kiktenko, E.O., Elistratov, A.A., Pogosov, W.V., Lozovik, Y.E.: Quantum communication protocols as a benchmark for programmable quantum computers. Quantum Inf. Proc. 18(1), 1–23 (2019)
Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86(1), 153 (2014)
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou, X.-Q., Love, P.J., Aspuru-Guzik, A., O’brien, J.L.: A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5(1), 1–7 (2014)
O’Malley, P.J., Babbush, R., Kivlichan, I.D., Romero, J., McClean, J.R., Barends, R., Kelly, J., Roushan, P., Tranter, A., Ding, N.: Scalable quantum simulation of molecular energies. Phys. Rev. X 6(3), 031007 (2016)
Mohseni, M., Read, P., Neven, H., Boixo, S., Denchev, V., Babbush, R., Fowler, A., Smelyanskiy, V., Martinis, J.: Commercialize quantum technologies in five years. Nat. News 543(7644), 171 (2017)
Li, Y., Benjamin, S.C.: Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7(2), 021050 (2017)
Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Bengtsson, A., Boixo, S., Broughton, M., Buckley, B.B., Buell, D.A., Burkett, B., Bushnell, N., Chen, Y., Chen, Z., Chen, Y.-A., Chiaro, B., Collins, R., Cotton, S.J., Courtney, W., Demura, S., Derk, A., Dunsworth, A., Eppens, D., Eckl, T., Erickson, C., Farhi, E., Fowler, A., Foxen, B., Gidney, C., Giustina, M., Graff, R., Gross, J.A., Habegger, S., Harrigan, M.P., Ho, A., Hong, S., Huang, T., Huggins, W., Ioffe, L.B., Isakov, S.V., Jeffrey, E., Jiang, Z., Jones, C., Kafri, D., Kechedzhi, K., Kelly, J., Kim, S., Klimov, P.V., Korotkov, A.N., Kostritsa, F., Landhuis, D., Laptev, P., Lindmark, M., Lucero, E., Marthaler, M., Martin, O., Martinis, J.M., Marusczyk, A., McArdle, S., McClean, J.R., McCourt, T., McEwen, M., Megrant, A., Mejuto-Zaera, C., Mi, X., Mohseni, M., Mruczkiewicz, W., Mutus, J., Naaman, O., Neeley, M., Neill, C., Neven, H., Newman, M., Niu, M.Y., O’Brien, T.E., Ostby, E., Pató, B., Petukhov, A., Putterman, H., Quintana, C., Reiner, J.-M., Roushan, P., Rubin, N.C., Sank, D., Satzinger, K.J., Smelyanskiy, V., Strain, D., Sung, K.J., Schmitteckert, P., Szalay, M., Tubman, N.M., Vainsencher, A., White, T., Vogt, N., Yao, Z.J., Yeh, P., Zalcman, A., Zanker, S.: Observation of separated dynamics of charge and spin in the Fermi-Hubbard model (2020)
Cappellaro, P., Viola, L., Ramanathan, C.: Coherent-state transfer via highly mixed quantum spin chains. Phys. Rev. A 83, 032304 (2011)
Zhukov, A.A., Remizov, S.V., Pogosov, W.V., Lozovik, Y.E.: Algorithmic simulation of far-from-equilibrium dynamics using quantum computer. Quantum Inf. Proc. 17(9), 1–26 (2018)
Babukhin, D.V., Zhukov, A.A., Pogosov, W.V.: Hybrid digital-analog simulation of many-body dynamics with superconducting qubits. Phys. Rev. A 101, 052337 (2020)
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017)
Dunjko, V., Briegel, H.J.: Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Prog. Phys. 81(7), 074001 (2018)
Perdomo-Ortiz, A., Benedetti, M., Realpe-Gómez, J., Biswas, R.: Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. Quantum Sci. Technol. 3(3), 030502 (2018)
Ciliberto, C., Herbster, M., Ialongo, A.D., Pontil, M., Rocchetto, A., Severini, S., Wossnig, L.: Quantum machine learning: a classical perspective. Proc. Math. Phys. Eng. Sci. 474(2209), 20170551 (2018)
Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2015)
Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M.: Parameterized quantum circuits as machine learning models. Quantum Sci. Technol. 4(4), 043001 (2019)
Nielsen, M.A.: Neural Networks and Deep Learning, vol. 25 (2015)
Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., Zdeborová, L.: Machine learning and the physical sciences. Rev. Mod. Phys. 91(4), 045002 (2019)
Lennon, D., Moon, H., Camenzind, L., Yu, L., Zumbühl, D., Briggs, G., Osborne, M., Laird, E., Ares, N.: Efficiently measuring a quantum device using machine learning. Npj Quantum Inf. 5(1), 1–8 (2019)
Nautrup, H.P., Delfosse, N., Dunjko, V., Briegel, H.J., Friis, N.: Optimizing quantum error correction codes with reinforcement learning. Quantum 3, 215 (2019)
Baireuther, P., O’Brien, T.E., Tarasinski, B., Beenakker, C.W.J.: Machine-learning-assisted correction of correlated qubit errors in a topological code. Quantum 2, 48 (2018)
Andreasson, P., Johansson, J., Liljestrand, S., Granath, M.: Quantum error correction for the toric code using deep reinforcement learning. Quantum 3, 183 (2019)
Kalantre, S.S., Zwolak, J.P., Ragole, S., Wu, X., Zimmerman, N.M., Stewart, M.D., Taylor, J.M.: Machine learning techniques for state recognition and auto-tuning in quantum dots. Npj Quantum Inf. 5(1), 1–10 (2019)
Vozhakov, V., Bastrakova, M.V., Klenov, N.V., Soloviev, I.I., Pogosov, W.V., Babukhin, D.V., Zhukov, A.A., Satanin, A.M.: State control in superconducting quantum processors. Physics–Uspekhi (2021)
Bukov, M., Day, A.G., Sels, D., Weinberg, P., Polkovnikov, A., Mehta, P.: Reinforcement learning in different phases of quantum control. Phys. Rev. X 8(3), 031086 (2018)
Niu, M.Y., Boixo, S., Smelyanskiy, V.N., Neven, H.: Universal quantum control through deep reinforcement learning. Npj Quantum Inf. 5(1), 1–8 (2019)
Babukhin, D.V., Zhukov, A.A., Pogosov, W.V.: Nondestructive classification of quantum states using an algorithmic quantum computer. Quantum Mach. Intell. 1(3), 87–96 (2019)
Carrasquilla, J., Melko, R.G.: Machine learning phases of matter. Nat. Phys. 13(5), 431–434 (2017)
Altepeter, J.B., Jeffrey, E.R., Kwiat, P.G.: Photonic state tomography. Adv. At. Mol. Opt. Phys. 52, 105–159 (2005)
Torlai, G., Mazzola, G., Carrasquilla, J., Troyer, M., Melko, R., Carleo, G.: Neural-network quantum state tomography. Nat. Phys. 14(5), 447–450 (2018)
Neugebauer, M., Fischer, L., Jäger, A., Czischek, S., Jochim, S., Weidemüller, M., Gärttner, M.: Neural-network quantum state tomography in a two-qubit experiment. Phys. Rev. A 102(4), 042604 (2020)
Lohani, S., Kirby, B.T., Brodsky, M., Danaci, O., Glasser, R.T.: Machine learning assisted quantum state estimation. Mach. Learn. Sci. Technol. 1(3), 035007 (2020)
Sehayek, D., Golubeva, A., Albergo, M.S., Kulchytskyy, B., Torlai, G., Melko, R.G.: Learnability scaling of quantum states: restricted Boltzmann machines. Phys. Rev. B 100(19), 195125 (2019)
Palmieri, A.M., Kovlakov, E., Bianchi, F., Yudin, D., Straupe, S., Biamonte, J.D., Kulik, S.: Experimental neural network enhanced quantum tomography. Npj Quantum Inf. 6(1), 1–5 (2020)
Teo, Y.S., Shin, S., Jeong, H., Kim, Y., Kim, Y.-H., Struchalin, G.I., Kovlakov, E.V., Straupe, S.S., Kulik, S.P., Leuchs, G., et al.: Benchmarking quantum tomography completeness and fidelity with machine learning. arXiv:2103.01535 (2021)
Czarnik, P., Arrasmith, A., Coles, P.J., Cincio, L.: Error mitigation with clifford quantum-circuit data. arXiv:2005.10189 (2020)
Strikis, A., Qin, D., Chen, Y., Benjamin, S.C., Li, Y.: Learning-based quantum error mitigation. arXiv:2005.07601 (2020)
Kim, C., Park, K.D., Rhee, J.-K.: Quantum error mitigation with artificial neural network. IEEE Access 8, 188853–188860 (2020)
Proctor, T., Rudinger, K., Young, K., Nielsen, E., Blume-Kohout, R.: Measuring the Capabilities of Quantum Computers (2020)
Temme, K., Bravyi, S., Gambetta, J.M.: Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 180509 (2017)
Fauseweh, B., Zhu, J.-X.: Digital quantum simulation of non-equilibrium quantum many-body systems. Quantum Inf. Proc. 20, 138 (2021)
Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2017)
Acknowledgements
We acknowledge use of the IBM Quantum Experience for this work. The viewpoints expressed are those of the authors and do not reflect the official policy or position of IBM or the IBM Quantum Experience team. A. A. Zh. acknowledges a support from RFBR (project no. 20-37-70028). W. V. P. acknowledges a support from RFBR (project no. 19-02-00421).
Author information
Authors and Affiliations
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhukov, A., Pogosov, W. Quantum error reduction with deep neural network applied at the post-processing stage. Quantum Inf Process 21, 93 (2022). https://doi.org/10.1007/s11128-022-03433-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03433-9