Skip to main content
Log in

Dynamic and compressed quantum many-body state secret sharing based on site-independent matrix product states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Tensor network states, in which tensor networks are used to encode the coefficients of a state wavefunction, have been proposed for the study of quantum many-body systems. The most common tensor network state is matrix product state (MPS). Furthermore, we can change the tensor in an MPS but not the quantum state it represents (that is, we only change its mathematical representation, not its actual physical quantity). Most importantly, MPS can be faithfully compressed. However, a dynamic and compressed quantum many-body state secret sharing scheme has yet to be proposed, which is important in practical settings. Therefore, based on the characteristics of site-independent matrix product states, we focus our attention in this paper on the scenario where the shared quantum state is large, but quantum storage resources are limited, and the number of participants can be dynamically adjusted to fill this gap and develop a dynamic and compressed quantum many-body state secret sharing scheme. The notable features of our scheme are that (i) the quantum secret state is faithfully compressed, (ii) the dynamic property is achieved by tensor contraction, tensor addition, and tensor subtraction of MPS form corresponding to the change in the number of quantum participants and the shared quantum many-body state update or quantum participant’s replacement, (iii) our scheme allows for the sharing of a large volume of quantum data in an inherently multipartite way, and (iv) the amount of quantum storage required by participants can be reduced exponentially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rozema, L.A., Mahler, D.H., Hayat, A., Turner, P.S., Steinberg, A.M.: Quantum data compression of a qubit ensemble. Phys. Rev. Lett. 113(16), 160504 (2014)

    Article  ADS  Google Scholar 

  2. Sutherland, B.: Quantum many-body problem in one dimension: ground state. J. Math. Phys. 12(2), 246–250 (1971)

    Article  ADS  Google Scholar 

  3. Carleo, G., Troyer, M.: Solving the quantum many-body problem with artificial neural networks. Science 355(6325), 602–606 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. Islam, R., Ma, R., Preiss, P.M., Tai, M.E., Lukin, A., Rispoli, M., Greiner, M.: Measuring entanglement entropy in a quantum many-body system. Nature 528(7580), 77–83 (2015)

    Article  ADS  Google Scholar 

  5. Ho, W.W., Choi, S., Pichler, H., Lukin, M.D.: Periodic orbits, entanglement, and quantum many-body scars in constrained models: matrix product state approach. Phys. Rev. Lett. 122(4), 040603 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  6. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92(17), 177903177903 (2004)

    Article  ADS  Google Scholar 

  7. Hou, K., Li, Y.B., Shi, S.H.: Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements. Opt. Commun. 283, 1961 (2010)

    Article  ADS  Google Scholar 

  8. Lu, H., Zhang, Z., Chen, L.K., Li, Z.D., Liu, C., Li, L., Liu, N.L., Ma, X., Chen, Y.A., Pan, J.W.: Secret sharing of a quantum state. Phys. Rev. Lett. 117(3), 030501 (2016)

    Article  ADS  Google Scholar 

  9. Qin, H., Tso, R., Dai, Y.: Multi-dimensional quantum state sharing based on quantum Fourier transform. Quantum Inf. Process. 17(3), 1–12 (2018)

    Article  MathSciNet  Google Scholar 

  10. Schollwöck, U.: The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326(1), 96–192 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  11. Cheng, S., Wang, L., Xiang, T., Zhang, P.: Tree tensor networks for generative modeling. Phys. Rev. B 99(15), 155131 (2019)

    Article  ADS  Google Scholar 

  12. Evenbly, G., Vidal, G.: Entanglement renormalization in two spatial dimensions. Phys. Rev. Lett. 102(18), 180406 (2009)

    Article  ADS  Google Scholar 

  13. Stoudenmire, E.M.: Learning relevant features of data with multi-scale tensor networks. Quantum Sci. Technol. 3(3), 034003 (2018)

    Article  ADS  Google Scholar 

  14. Navascués, M., Singh, S., Acín, A.: Connector tensor networks: a renormalization-type approach to quantum certification. Phys. Rev. X 10(2), 021064 (2020)

    Google Scholar 

  15. Chabuda, K., Dziarmaga, J., Osborne, T.J., Demkowicz-Dobrzaski, R.: Tensor-network approach for quantum metrology in many-body quantum systems. Nat. Commun. 11(1), 1–12 (2020)

    Article  Google Scholar 

  16. Ran, S.J., Piga, A., Peng, C., Su, G., Lewenstein, M.: Few-body systems capture many-body physics: tensor network approach. Phys. Rev. B 96(15), 155120 (2017)

    Article  ADS  Google Scholar 

  17. Ran, S.J., Tirrito, E., Peng, C., Chen, X., Tagliacozzo, L., Su, G., Lewenstein, M.: Tensor Network Contractions: Methods and Applications to Quantum Many-Body Systems, p. 150. Springer Nature, Berlin (2020)

    Book  Google Scholar 

  18. Biamonte, J.: Lectures on Quantum Tensor Networks. arXiv:1912.10049v2 [quant-ph] (2020)

  19. Eisert, J.: Entanglement and tensor network states. arXiv preprint arXiv:1308.3318 (2013)

  20. Schumacher, B.: Quantum coding. Phys. Rev. A 51(4), 2738 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  21. Jozsa, R., Schumacher, B.: A new proof of the quantum noiseless coding theorem. J. Mod. Opt. 41(12), 2343–2349 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  22. Bai, G., Yang, Y.X., Chiribella, G.: Quantum compression of tensor network states. New J. Phys. 22, 043015 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ran, S.J., Sun, Z.Z., Fei, S.M., Su, G., Lewenstein, M.: Tensor network compressed sensing with unsupervised machine learning. Phys. Rev. Res. 2(3), 033293 (2020)

    Article  Google Scholar 

  24. Affleck, I., Tom, K., Elliott, L., Hal, T.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59(7), 799–802 (1987)

    Article  ADS  Google Scholar 

  25. Pérez García, D., Verstraete, F., Wolf, M.M., et al.: Matrix product state representations. Quantum Inf. Comput. 7(5), 401–430 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Liu, D., Ran, S.J., Wittek, P., Peng, C., Blázquez García, R., Su, G., Lewenstein, M.: Machine learning by unitary tensor network of hierarchical tree structure. NJPh 21(7), 073059 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  27. Liu, H.Z., Yang, L.T., Guo, Y., Xie, X., Ma, J.: An incremental tensor-train decomposition for cyber–physical–social big data. IEEE Trans. Big Data. (2018). https://doi.org/10.1109/TBDATA.2018.2867485

    Article  Google Scholar 

  28. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  29. Curty, M., Lewenstein, M., Ltkenhaus, N.: Entanglement as a precondition for secure quantum key distribution. Phys. Rev. Lett. 92(21), 217903 (2004)

    Article  ADS  Google Scholar 

  30. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Reviews of modern physics. Quantum Entanglement 81(2), 865 (2009)

    MATH  Google Scholar 

  31. Tura, J., Augusiak, R., Sainz, A.B., Vértesi, T., Lewenstein, M., Acín, A.: Detecting nonlocality in many-body quantum states. Science 344(6189), 1256–1258 (2014)

    Article  ADS  Google Scholar 

  32. Tura, J., Aloy, A., Baccari, F., Acín, A., Lewenstein, M., Augusiak, R.: Optimization of device-independent witnesses of entanglement depth from two-body correlators. Phys. Rev. A 100(3), 032307 (2019)

    Article  ADS  Google Scholar 

  33. Cramer, M., Plenio, M.B., Flammia, S.T., Somma, R., Gross, D., Bartlett, S.D., Liu, Y.K.: Efficient quantum state tomography. Nat. Commun. 1(1), 1–7 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Hong Lai has been supported by the National Natural Science Foundation of China (No. 61702427) and the Fundamental Research Funds for the Central Universities (XDJK2020B027), Venture and Innovation Support Program for Chongqing Overseas Returnees (No. cx2018076), and the financial support in part by the 1000-Plan of Chongqing by Southwest University (No. SWU116007). Josef Pieprzyk has been supported by Australian Research Council (ARC) Grant DP180102199 and Polish National Science Center (NCN) Grant 2018/31/B/ST6/03003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Lai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, H., Pieprzyk, J. & Pan, L. Dynamic and compressed quantum many-body state secret sharing based on site-independent matrix product states. Quantum Inf Process 21, 83 (2022). https://doi.org/10.1007/s11128-022-03420-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03420-0

Keywords

Navigation